Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrdifel.t |
⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
2 |
|
pmtrdifel.r |
⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) |
3 |
|
pmtrdifwrdel.0 |
⊢ 𝑈 = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ) |
4 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
5 |
|
fvex |
⊢ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ∈ V |
6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑖 → ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ 𝑖 ) ) |
7 |
6
|
difeq1d |
⊢ ( 𝑥 = 𝑖 → ( ( 𝑊 ‘ 𝑥 ) ∖ I ) = ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) |
8 |
7
|
dmeqd |
⊢ ( 𝑥 = 𝑖 → dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) = dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝑥 = 𝑖 → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ) |
10 |
9 3
|
fvmptg |
⊢ ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ∈ V ) → ( 𝑈 ‘ 𝑖 ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ) |
11 |
4 5 10
|
sylancl |
⊢ ( ( ( 𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑈 ‘ 𝑖 ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ) |
12 |
11
|
fveq1d |
⊢ ( ( ( 𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝐾 ) ) |
13 |
|
wrdsymbcl |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ 𝑇 ) |
14 |
13
|
adantlr |
⊢ ( ( ( 𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ 𝑇 ) |
15 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐾 ∈ 𝑁 ) |
16 |
|
eqid |
⊢ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) |
17 |
1 2 16
|
pmtrdifellem4 |
⊢ ( ( ( 𝑊 ‘ 𝑖 ) ∈ 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝐾 ) = 𝐾 ) |
18 |
14 15 17
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝐾 ) = 𝐾 ) |
19 |
12 18
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |
20 |
19
|
ralrimiva |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝐾 ∈ 𝑁 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑈 ‘ 𝑖 ) ‘ 𝐾 ) = 𝐾 ) |