| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtrdifel.t |
⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
| 2 |
|
pmtrdifel.r |
⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) |
| 3 |
|
pmtrdifwrdel.0 |
⊢ 𝑈 = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ) |
| 4 |
|
wrdsymbcl |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑥 ) ∈ 𝑇 ) |
| 5 |
|
eqid |
⊢ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) |
| 6 |
1 2 5
|
pmtrdifellem1 |
⊢ ( ( 𝑊 ‘ 𝑥 ) ∈ 𝑇 → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ∈ 𝑅 ) |
| 7 |
4 6
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ∈ 𝑅 ) |
| 8 |
7
|
ralrimiva |
⊢ ( 𝑊 ∈ Word 𝑇 → ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ∈ 𝑅 ) |
| 9 |
3
|
fnmpt |
⊢ ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ∈ 𝑅 → 𝑈 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 10 |
|
hashfn |
⊢ ( 𝑈 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 11 |
8 9 10
|
3syl |
⊢ ( 𝑊 ∈ Word 𝑇 → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 12 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑇 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 13 |
|
hashfzo0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 14 |
12 13
|
syl |
⊢ ( 𝑊 ∈ Word 𝑇 → ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 15 |
11 14
|
eqtr2d |
⊢ ( 𝑊 ∈ Word 𝑇 → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) |