Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrdifel.t |
⊢ 𝑇 = ran ( pmTrsp ‘ ( 𝑁 ∖ { 𝐾 } ) ) |
2 |
|
pmtrdifel.r |
⊢ 𝑅 = ran ( pmTrsp ‘ 𝑁 ) |
3 |
|
pmtrdifwrdel.0 |
⊢ 𝑈 = ( 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↦ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) ) |
4 |
|
wrdsymbcl |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑖 ) ∈ 𝑇 ) |
5 |
|
eqid |
⊢ ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) |
6 |
1 2 5
|
pmtrdifellem3 |
⊢ ( ( 𝑊 ‘ 𝑖 ) ∈ 𝑇 → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝑛 ) ) |
7 |
4 6
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝑛 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑥 = 𝑖 → ( 𝑊 ‘ 𝑥 ) = ( 𝑊 ‘ 𝑖 ) ) |
9 |
8
|
difeq1d |
⊢ ( 𝑥 = 𝑖 → ( ( 𝑊 ‘ 𝑥 ) ∖ I ) = ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) |
10 |
9
|
dmeqd |
⊢ ( 𝑥 = 𝑖 → dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) = dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) |
11 |
10
|
fveq2d |
⊢ ( 𝑥 = 𝑖 → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑥 ) ∖ I ) ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ) |
12 |
|
simpr |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
13 |
|
fvexd |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ∈ V ) |
14 |
3 11 12 13
|
fvmptd3 |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑈 ‘ 𝑖 ) = ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ) |
15 |
14
|
fveq1d |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝑛 ) ) |
16 |
15
|
eqeq2d |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝑛 ) ) ) |
17 |
16
|
ralbidv |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom ( ( 𝑊 ‘ 𝑖 ) ∖ I ) ) ‘ 𝑛 ) ) ) |
18 |
7 17
|
mpbird |
⊢ ( ( 𝑊 ∈ Word 𝑇 ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
19 |
18
|
ralrimiva |
⊢ ( 𝑊 ∈ Word 𝑇 → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ ( 𝑁 ∖ { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |