Metamath Proof Explorer


Theorem pmtrf

Description: Functionality of a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t 𝑇 = ( pmTrsp ‘ 𝐷 )
Assertion pmtrf ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → ( 𝑇𝑃 ) : 𝐷𝐷 )

Proof

Step Hyp Ref Expression
1 pmtrfval.t 𝑇 = ( pmTrsp ‘ 𝐷 )
2 1 pmtrval ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → ( 𝑇𝑃 ) = ( 𝑧𝐷 ↦ if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) )
3 simpll2 ( ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) ∧ 𝑧𝑃 ) → 𝑃𝐷 )
4 1onn 1o ∈ ω
5 simpll3 ( ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) ∧ 𝑧𝑃 ) → 𝑃 ≈ 2o )
6 df-2o 2o = suc 1o
7 5 6 breqtrdi ( ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) ∧ 𝑧𝑃 ) → 𝑃 ≈ suc 1o )
8 simpr ( ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) ∧ 𝑧𝑃 ) → 𝑧𝑃 )
9 dif1en ( ( 1o ∈ ω ∧ 𝑃 ≈ suc 1o𝑧𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≈ 1o )
10 4 7 8 9 mp3an2i ( ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) ∧ 𝑧𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≈ 1o )
11 en1uniel ( ( 𝑃 ∖ { 𝑧 } ) ≈ 1o ( 𝑃 ∖ { 𝑧 } ) ∈ ( 𝑃 ∖ { 𝑧 } ) )
12 eldifi ( ( 𝑃 ∖ { 𝑧 } ) ∈ ( 𝑃 ∖ { 𝑧 } ) → ( 𝑃 ∖ { 𝑧 } ) ∈ 𝑃 )
13 10 11 12 3syl ( ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) ∧ 𝑧𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ∈ 𝑃 )
14 3 13 sseldd ( ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) ∧ 𝑧𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ∈ 𝐷 )
15 simplr ( ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) ∧ ¬ 𝑧𝑃 ) → 𝑧𝐷 )
16 14 15 ifclda ( ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑧𝐷 ) → if ( 𝑧𝑃 , ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ∈ 𝐷 )
17 2 16 fmpt3d ( ( 𝐷𝑉𝑃𝐷𝑃 ≈ 2o ) → ( 𝑇𝑃 ) : 𝐷𝐷 )