Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrfval.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
1
|
pmtrval |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
3 |
|
simpll2 |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → 𝑃 ⊆ 𝐷 ) |
4 |
|
1onn |
⊢ 1o ∈ ω |
5 |
|
simpll3 |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → 𝑃 ≈ 2o ) |
6 |
|
df-2o |
⊢ 2o = suc 1o |
7 |
5 6
|
breqtrdi |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → 𝑃 ≈ suc 1o ) |
8 |
|
simpr |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → 𝑧 ∈ 𝑃 ) |
9 |
|
dif1en |
⊢ ( ( 1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑧 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≈ 1o ) |
10 |
4 7 8 9
|
mp3an2i |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≈ 1o ) |
11 |
|
en1uniel |
⊢ ( ( 𝑃 ∖ { 𝑧 } ) ≈ 1o → ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ ( 𝑃 ∖ { 𝑧 } ) ) |
12 |
|
eldifi |
⊢ ( ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ ( 𝑃 ∖ { 𝑧 } ) → ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ 𝑃 ) |
13 |
10 11 12
|
3syl |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ 𝑃 ) |
14 |
3 13
|
sseldd |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ 𝑧 ∈ 𝑃 ) → ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ 𝐷 ) |
15 |
|
simplr |
⊢ ( ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) ∧ ¬ 𝑧 ∈ 𝑃 ) → 𝑧 ∈ 𝐷 ) |
16 |
14 15
|
ifclda |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ∈ 𝐷 ) |
17 |
2 16
|
fmpt3d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) : 𝐷 ⟶ 𝐷 ) |