Metamath Proof Explorer


Theorem pmtrfcnv

Description: A transposition function is its own inverse. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t 𝑇 = ( pmTrsp ‘ 𝐷 )
pmtrrn.r 𝑅 = ran 𝑇
Assertion pmtrfcnv ( 𝐹𝑅 𝐹 = 𝐹 )

Proof

Step Hyp Ref Expression
1 pmtrrn.t 𝑇 = ( pmTrsp ‘ 𝐷 )
2 pmtrrn.r 𝑅 = ran 𝑇
3 eqid dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I )
4 1 2 3 pmtrfrn ( 𝐹𝑅 → ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) )
5 4 simpld ( 𝐹𝑅 → ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) )
6 1 pmtrf ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷𝐷 )
7 5 6 syl ( 𝐹𝑅 → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷𝐷 )
8 4 simprd ( 𝐹𝑅𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) )
9 8 feq1d ( 𝐹𝑅 → ( 𝐹 : 𝐷𝐷 ↔ ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷𝐷 ) )
10 7 9 mpbird ( 𝐹𝑅𝐹 : 𝐷𝐷 )
11 1 2 pmtrfinv ( 𝐹𝑅 → ( 𝐹𝐹 ) = ( I ↾ 𝐷 ) )
12 10 10 11 11 2fcoidinvd ( 𝐹𝑅 𝐹 = 𝐹 )