Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrrn.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
|
pmtrrn.r |
⊢ 𝑅 = ran 𝑇 |
3 |
1 2
|
pmtrfb |
⊢ ( 𝐹 ∈ 𝑅 ↔ ( 𝐷 ∈ V ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ) |
4 |
3
|
simp1bi |
⊢ ( 𝐹 ∈ 𝑅 → 𝐷 ∈ V ) |
5 |
4
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → 𝐷 ∈ V ) |
6 |
|
simpr |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) |
7 |
1 2
|
pmtrff1o |
⊢ ( 𝐹 ∈ 𝑅 → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |
8 |
7
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |
9 |
|
f1oco |
⊢ ( ( 𝐺 : 𝐷 –1-1-onto→ 𝐷 ∧ 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) : 𝐷 –1-1-onto→ 𝐷 ) |
10 |
6 8 9
|
syl2anc |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ( 𝐺 ∘ 𝐹 ) : 𝐷 –1-1-onto→ 𝐷 ) |
11 |
|
f1ocnv |
⊢ ( 𝐺 : 𝐷 –1-1-onto→ 𝐷 → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) |
12 |
11
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) |
13 |
|
f1oco |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) : 𝐷 –1-1-onto→ 𝐷 ∧ ◡ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) : 𝐷 –1-1-onto→ 𝐷 ) |
14 |
10 12 13
|
syl2anc |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) : 𝐷 –1-1-onto→ 𝐷 ) |
15 |
|
f1of |
⊢ ( 𝐹 : 𝐷 –1-1-onto→ 𝐷 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
16 |
7 15
|
syl |
⊢ ( 𝐹 ∈ 𝑅 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
17 |
16
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → 𝐹 : 𝐷 ⟶ 𝐷 ) |
18 |
|
f1omvdconj |
⊢ ( ( 𝐹 : 𝐷 ⟶ 𝐷 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) = ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) |
19 |
17 6 18
|
syl2anc |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) = ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ) |
20 |
|
f1of1 |
⊢ ( 𝐺 : 𝐷 –1-1-onto→ 𝐷 → 𝐺 : 𝐷 –1-1→ 𝐷 ) |
21 |
20
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → 𝐺 : 𝐷 –1-1→ 𝐷 ) |
22 |
|
difss |
⊢ ( 𝐹 ∖ I ) ⊆ 𝐹 |
23 |
|
dmss |
⊢ ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 ) |
24 |
22 23
|
ax-mp |
⊢ dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 |
25 |
24 17
|
fssdm |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( 𝐹 ∖ I ) ⊆ 𝐷 ) |
26 |
5 25
|
ssexd |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( 𝐹 ∖ I ) ∈ V ) |
27 |
|
f1imaeng |
⊢ ( ( 𝐺 : 𝐷 –1-1→ 𝐷 ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ∈ V ) → ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ≈ dom ( 𝐹 ∖ I ) ) |
28 |
21 25 26 27
|
syl3anc |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ( 𝐺 “ dom ( 𝐹 ∖ I ) ) ≈ dom ( 𝐹 ∖ I ) ) |
29 |
19 28
|
eqbrtrd |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ≈ dom ( 𝐹 ∖ I ) ) |
30 |
3
|
simp3bi |
⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≈ 2o ) |
31 |
30
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( 𝐹 ∖ I ) ≈ 2o ) |
32 |
|
entr |
⊢ ( ( dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ≈ dom ( 𝐹 ∖ I ) ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ≈ 2o ) |
33 |
29 31 32
|
syl2anc |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ≈ 2o ) |
34 |
1 2
|
pmtrfb |
⊢ ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∈ 𝑅 ↔ ( 𝐷 ∈ V ∧ ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) : 𝐷 –1-1-onto→ 𝐷 ∧ dom ( ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∖ I ) ≈ 2o ) ) |
35 |
5 14 33 34
|
syl3anbrc |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝐺 : 𝐷 –1-1-onto→ 𝐷 ) → ( ( 𝐺 ∘ 𝐹 ) ∘ ◡ 𝐺 ) ∈ 𝑅 ) |