Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrrn.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
|
pmtrrn.r |
⊢ 𝑅 = ran 𝑇 |
3 |
|
eqid |
⊢ dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) |
4 |
1 2 3
|
pmtrfrn |
⊢ ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) ) |
5 |
4
|
simpld |
⊢ ( 𝐹 ∈ 𝑅 → ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ) |
6 |
1
|
pmtrf |
⊢ ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 ⟶ 𝐷 ) |
7 |
5 6
|
syl |
⊢ ( 𝐹 ∈ 𝑅 → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 ⟶ 𝐷 ) |
8 |
4
|
simprd |
⊢ ( 𝐹 ∈ 𝑅 → 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) |
9 |
8
|
feq1d |
⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 : 𝐷 ⟶ 𝐷 ↔ ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 ⟶ 𝐷 ) ) |
10 |
7 9
|
mpbird |
⊢ ( 𝐹 ∈ 𝑅 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
11 |
1 2
|
pmtrfinv |
⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐷 ) ) |
12 |
10 10 11 11
|
fcof1od |
⊢ ( 𝐹 ∈ 𝑅 → 𝐹 : 𝐷 –1-1-onto→ 𝐷 ) |