Metamath Proof Explorer


Theorem pmtrffv

Description: Mapping of a point under a transposition function. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t 𝑇 = ( pmTrsp ‘ 𝐷 )
pmtrrn.r 𝑅 = ran 𝑇
pmtrfrn.p 𝑃 = dom ( 𝐹 ∖ I )
Assertion pmtrffv ( ( 𝐹𝑅𝑍𝐷 ) → ( 𝐹𝑍 ) = if ( 𝑍𝑃 , ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) )

Proof

Step Hyp Ref Expression
1 pmtrrn.t 𝑇 = ( pmTrsp ‘ 𝐷 )
2 pmtrrn.r 𝑅 = ran 𝑇
3 pmtrfrn.p 𝑃 = dom ( 𝐹 ∖ I )
4 1 2 3 pmtrfrn ( 𝐹𝑅 → ( ( 𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇𝑃 ) ) )
5 4 simprd ( 𝐹𝑅𝐹 = ( 𝑇𝑃 ) )
6 5 fveq1d ( 𝐹𝑅 → ( 𝐹𝑍 ) = ( ( 𝑇𝑃 ) ‘ 𝑍 ) )
7 6 adantr ( ( 𝐹𝑅𝑍𝐷 ) → ( 𝐹𝑍 ) = ( ( 𝑇𝑃 ) ‘ 𝑍 ) )
8 4 simpld ( 𝐹𝑅 → ( 𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o ) )
9 1 pmtrfv ( ( ( 𝐷 ∈ V ∧ 𝑃𝐷𝑃 ≈ 2o ) ∧ 𝑍𝐷 ) → ( ( 𝑇𝑃 ) ‘ 𝑍 ) = if ( 𝑍𝑃 , ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) )
10 8 9 sylan ( ( 𝐹𝑅𝑍𝐷 ) → ( ( 𝑇𝑃 ) ‘ 𝑍 ) = if ( 𝑍𝑃 , ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) )
11 7 10 eqtrd ( ( 𝐹𝑅𝑍𝐷 ) → ( 𝐹𝑍 ) = if ( 𝑍𝑃 , ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) )