Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrrn.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
|
pmtrrn.r |
⊢ 𝑅 = ran 𝑇 |
3 |
|
pmtrfrn.p |
⊢ 𝑃 = dom ( 𝐹 ∖ I ) |
4 |
1 2 3
|
pmtrfrn |
⊢ ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ 𝑃 ) ) ) |
5 |
4
|
simprd |
⊢ ( 𝐹 ∈ 𝑅 → 𝐹 = ( 𝑇 ‘ 𝑃 ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 ‘ 𝑍 ) = ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑍 ) = ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) ) |
8 |
4
|
simpld |
⊢ ( 𝐹 ∈ 𝑅 → ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ) |
9 |
1
|
pmtrfv |
⊢ ( ( ( 𝐷 ∈ V ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷 ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |
11 |
7 10
|
eqtrd |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑍 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |