Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrrn.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
|
pmtrrn.r |
⊢ 𝑅 = ran 𝑇 |
3 |
|
eqid |
⊢ dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) |
4 |
1 2 3
|
pmtrfrn |
⊢ ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) ) |
5 |
4
|
simpld |
⊢ ( 𝐹 ∈ 𝑅 → ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ) |
6 |
1
|
pmtrf |
⊢ ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 ⟶ 𝐷 ) |
7 |
5 6
|
syl |
⊢ ( 𝐹 ∈ 𝑅 → ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 ⟶ 𝐷 ) |
8 |
4
|
simprd |
⊢ ( 𝐹 ∈ 𝑅 → 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) |
9 |
8
|
feq1d |
⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 : 𝐷 ⟶ 𝐷 ↔ ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) : 𝐷 ⟶ 𝐷 ) ) |
10 |
7 9
|
mpbird |
⊢ ( 𝐹 ∈ 𝑅 → 𝐹 : 𝐷 ⟶ 𝐷 ) |
11 |
|
fco |
⊢ ( ( 𝐹 : 𝐷 ⟶ 𝐷 ∧ 𝐹 : 𝐷 ⟶ 𝐷 ) → ( 𝐹 ∘ 𝐹 ) : 𝐷 ⟶ 𝐷 ) |
12 |
11
|
anidms |
⊢ ( 𝐹 : 𝐷 ⟶ 𝐷 → ( 𝐹 ∘ 𝐹 ) : 𝐷 ⟶ 𝐷 ) |
13 |
|
ffn |
⊢ ( ( 𝐹 ∘ 𝐹 ) : 𝐷 ⟶ 𝐷 → ( 𝐹 ∘ 𝐹 ) Fn 𝐷 ) |
14 |
10 12 13
|
3syl |
⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 ∘ 𝐹 ) Fn 𝐷 ) |
15 |
|
fnresi |
⊢ ( I ↾ 𝐷 ) Fn 𝐷 |
16 |
15
|
a1i |
⊢ ( 𝐹 ∈ 𝑅 → ( I ↾ 𝐷 ) Fn 𝐷 ) |
17 |
1 2 3
|
pmtrffv |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ 𝑥 ) = if ( 𝑥 ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) ) |
18 |
|
iftrue |
⊢ ( 𝑥 ∈ dom ( 𝐹 ∖ I ) → if ( 𝑥 ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) , 𝑥 ) = ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) |
19 |
17 18
|
sylan9eq |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑥 ) = ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) |
20 |
19
|
fveq2d |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) ) |
21 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → 𝐹 ∈ 𝑅 ) |
22 |
5
|
simp2d |
⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ⊆ 𝐷 ) |
23 |
22
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → dom ( 𝐹 ∖ I ) ⊆ 𝐷 ) |
24 |
|
1onn |
⊢ 1o ∈ ω |
25 |
5
|
simp3d |
⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≈ 2o ) |
26 |
|
df-2o |
⊢ 2o = suc 1o |
27 |
25 26
|
breqtrdi |
⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≈ suc 1o ) |
28 |
27
|
ad2antrr |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → dom ( 𝐹 ∖ I ) ≈ suc 1o ) |
29 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → 𝑥 ∈ dom ( 𝐹 ∖ I ) ) |
30 |
|
dif1en |
⊢ ( ( 1o ∈ ω ∧ dom ( 𝐹 ∖ I ) ≈ suc 1o ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ≈ 1o ) |
31 |
24 28 29 30
|
mp3an2i |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ≈ 1o ) |
32 |
|
en1uniel |
⊢ ( ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ≈ 1o → ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) |
33 |
31 32
|
syl |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) |
34 |
33
|
eldifad |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) ) |
35 |
23 34
|
sseldd |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ 𝐷 ) |
36 |
1 2 3
|
pmtrffv |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ 𝐷 ) → ( 𝐹 ‘ ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) = if ( ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) ) |
37 |
21 35 36
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) = if ( ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) ) |
38 |
|
iftrue |
⊢ ( ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) → if ( ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) = ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) ) |
39 |
34 38
|
syl |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → if ( ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) = ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) ) |
40 |
25
|
adantr |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → dom ( 𝐹 ∖ I ) ≈ 2o ) |
41 |
|
en2other2 |
⊢ ( ( 𝑥 ∈ dom ( 𝐹 ∖ I ) ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) → ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) = 𝑥 ) |
42 |
41
|
ancoms |
⊢ ( ( dom ( 𝐹 ∖ I ) ≈ 2o ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) = 𝑥 ) |
43 |
40 42
|
sylan |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) = 𝑥 ) |
44 |
39 43
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → if ( ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ∈ dom ( 𝐹 ∖ I ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) } ) , ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) = 𝑥 ) |
45 |
37 44
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ∪ ( dom ( 𝐹 ∖ I ) ∖ { 𝑥 } ) ) = 𝑥 ) |
46 |
20 45
|
eqtrd |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
47 |
10
|
ffnd |
⊢ ( 𝐹 ∈ 𝑅 → 𝐹 Fn 𝐷 ) |
48 |
|
fnelnfp |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) |
49 |
47 48
|
sylan |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑥 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) |
50 |
49
|
necon2bbid |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑥 ) = 𝑥 ↔ ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) ) |
51 |
50
|
biimpar |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
52 |
|
fveq2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
53 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
54 |
52 53
|
eqtrd |
⊢ ( ( 𝐹 ‘ 𝑥 ) = 𝑥 → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
55 |
51 54
|
syl |
⊢ ( ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) ∧ ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
56 |
46 55
|
pm2.61dan |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
57 |
|
fvco2 |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
58 |
47 57
|
sylan |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ∘ 𝐹 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
59 |
|
fvresi |
⊢ ( 𝑥 ∈ 𝐷 → ( ( I ↾ 𝐷 ) ‘ 𝑥 ) = 𝑥 ) |
60 |
59
|
adantl |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( ( I ↾ 𝐷 ) ‘ 𝑥 ) = 𝑥 ) |
61 |
56 58 60
|
3eqtr4d |
⊢ ( ( 𝐹 ∈ 𝑅 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ∘ 𝐹 ) ‘ 𝑥 ) = ( ( I ↾ 𝐷 ) ‘ 𝑥 ) ) |
62 |
14 16 61
|
eqfnfvd |
⊢ ( 𝐹 ∈ 𝑅 → ( 𝐹 ∘ 𝐹 ) = ( I ↾ 𝐷 ) ) |