Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrrn.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
|
pmtrrn.r |
⊢ 𝑅 = ran 𝑇 |
3 |
|
2on0 |
⊢ 2o ≠ ∅ |
4 |
|
eqid |
⊢ dom ( 𝐹 ∖ I ) = dom ( 𝐹 ∖ I ) |
5 |
1 2 4
|
pmtrfrn |
⊢ ( 𝐹 ∈ 𝑅 → ( ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ∧ 𝐹 = ( 𝑇 ‘ dom ( 𝐹 ∖ I ) ) ) ) |
6 |
5
|
simpld |
⊢ ( 𝐹 ∈ 𝑅 → ( 𝐷 ∈ V ∧ dom ( 𝐹 ∖ I ) ⊆ 𝐷 ∧ dom ( 𝐹 ∖ I ) ≈ 2o ) ) |
7 |
6
|
simp3d |
⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≈ 2o ) |
8 |
|
enen1 |
⊢ ( dom ( 𝐹 ∖ I ) ≈ 2o → ( dom ( 𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅ ) ) |
9 |
7 8
|
syl |
⊢ ( 𝐹 ∈ 𝑅 → ( dom ( 𝐹 ∖ I ) ≈ ∅ ↔ 2o ≈ ∅ ) ) |
10 |
|
en0 |
⊢ ( dom ( 𝐹 ∖ I ) ≈ ∅ ↔ dom ( 𝐹 ∖ I ) = ∅ ) |
11 |
|
en0 |
⊢ ( 2o ≈ ∅ ↔ 2o = ∅ ) |
12 |
9 10 11
|
3bitr3g |
⊢ ( 𝐹 ∈ 𝑅 → ( dom ( 𝐹 ∖ I ) = ∅ ↔ 2o = ∅ ) ) |
13 |
12
|
necon3bid |
⊢ ( 𝐹 ∈ 𝑅 → ( dom ( 𝐹 ∖ I ) ≠ ∅ ↔ 2o ≠ ∅ ) ) |
14 |
3 13
|
mpbiri |
⊢ ( 𝐹 ∈ 𝑅 → dom ( 𝐹 ∖ I ) ≠ ∅ ) |