Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrfval.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
1
|
pmtrval |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
3 |
2
|
fveq1d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) = ( ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ‘ 𝑍 ) ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) = ( ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ‘ 𝑍 ) ) |
5 |
|
eqid |
⊢ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) |
6 |
|
eleq1 |
⊢ ( 𝑧 = 𝑍 → ( 𝑧 ∈ 𝑃 ↔ 𝑍 ∈ 𝑃 ) ) |
7 |
|
sneq |
⊢ ( 𝑧 = 𝑍 → { 𝑧 } = { 𝑍 } ) |
8 |
7
|
difeq2d |
⊢ ( 𝑧 = 𝑍 → ( 𝑃 ∖ { 𝑧 } ) = ( 𝑃 ∖ { 𝑍 } ) ) |
9 |
8
|
unieqd |
⊢ ( 𝑧 = 𝑍 → ∪ ( 𝑃 ∖ { 𝑧 } ) = ∪ ( 𝑃 ∖ { 𝑍 } ) ) |
10 |
|
id |
⊢ ( 𝑧 = 𝑍 → 𝑧 = 𝑍 ) |
11 |
6 9 10
|
ifbieq12d |
⊢ ( 𝑧 = 𝑍 → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |
12 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → 𝑍 ∈ 𝐷 ) |
13 |
|
simpl3 |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → 𝑃 ≈ 2o ) |
14 |
|
relen |
⊢ Rel ≈ |
15 |
14
|
brrelex1i |
⊢ ( 𝑃 ≈ 2o → 𝑃 ∈ V ) |
16 |
|
difexg |
⊢ ( 𝑃 ∈ V → ( 𝑃 ∖ { 𝑍 } ) ∈ V ) |
17 |
|
uniexg |
⊢ ( ( 𝑃 ∖ { 𝑍 } ) ∈ V → ∪ ( 𝑃 ∖ { 𝑍 } ) ∈ V ) |
18 |
13 15 16 17
|
4syl |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → ∪ ( 𝑃 ∖ { 𝑍 } ) ∈ V ) |
19 |
|
ifexg |
⊢ ( ( ∪ ( 𝑃 ∖ { 𝑍 } ) ∈ V ∧ 𝑍 ∈ 𝐷 ) → if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ∈ V ) |
20 |
18 19
|
sylancom |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ∈ V ) |
21 |
5 11 12 20
|
fvmptd3 |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → ( ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |
22 |
4 21
|
eqtrd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑍 ∈ 𝐷 ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑍 ) = if ( 𝑍 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑍 } ) , 𝑍 ) ) |