Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrfval.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
|
elex |
⊢ ( 𝐷 ∈ 𝑉 → 𝐷 ∈ V ) |
3 |
|
pweq |
⊢ ( 𝑑 = 𝐷 → 𝒫 𝑑 = 𝒫 𝐷 ) |
4 |
3
|
rabeqdv |
⊢ ( 𝑑 = 𝐷 → { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } = { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) |
5 |
|
mpteq1 |
⊢ ( 𝑑 = 𝐷 → ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
6 |
4 5
|
mpteq12dv |
⊢ ( 𝑑 = 𝐷 → ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
7 |
|
df-pmtr |
⊢ pmTrsp = ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
8 |
|
vpwex |
⊢ 𝒫 𝑑 ∈ V |
9 |
8
|
mptrabex |
⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∈ V |
10 |
6 7 9
|
fvmpt3i |
⊢ ( 𝐷 ∈ V → ( pmTrsp ‘ 𝐷 ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
11 |
2 10
|
syl |
⊢ ( 𝐷 ∈ 𝑉 → ( pmTrsp ‘ 𝐷 ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
12 |
1 11
|
eqtrid |
⊢ ( 𝐷 ∈ 𝑉 → 𝑇 = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |