Metamath Proof Explorer


Theorem pmtrfval

Description: The function generating transpositions on a set. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t 𝑇 = ( pmTrsp ‘ 𝐷 )
Assertion pmtrfval ( 𝐷𝑉𝑇 = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o } ↦ ( 𝑧𝐷 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) )

Proof

Step Hyp Ref Expression
1 pmtrfval.t 𝑇 = ( pmTrsp ‘ 𝐷 )
2 elex ( 𝐷𝑉𝐷 ∈ V )
3 pweq ( 𝑑 = 𝐷 → 𝒫 𝑑 = 𝒫 𝐷 )
4 3 rabeqdv ( 𝑑 = 𝐷 → { 𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o } = { 𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o } )
5 mpteq1 ( 𝑑 = 𝐷 → ( 𝑧𝑑 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) = ( 𝑧𝐷 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) )
6 4 5 mpteq12dv ( 𝑑 = 𝐷 → ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o } ↦ ( 𝑧𝑑 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o } ↦ ( 𝑧𝐷 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) )
7 df-pmtr pmTrsp = ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o } ↦ ( 𝑧𝑑 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) )
8 vpwex 𝒫 𝑑 ∈ V
9 8 mptrabex ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o } ↦ ( 𝑧𝑑 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ∈ V
10 6 7 9 fvmpt3i ( 𝐷 ∈ V → ( pmTrsp ‘ 𝐷 ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o } ↦ ( 𝑧𝐷 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) )
11 2 10 syl ( 𝐷𝑉 → ( pmTrsp ‘ 𝐷 ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o } ↦ ( 𝑧𝐷 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) )
12 1 11 syl5eq ( 𝐷𝑉𝑇 = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷𝑦 ≈ 2o } ↦ ( 𝑧𝐷 ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) )