Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrfval.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
1
|
pmtrf |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) : 𝐷 ⟶ 𝐷 ) |
3 |
|
ffn |
⊢ ( ( 𝑇 ‘ 𝑃 ) : 𝐷 ⟶ 𝐷 → ( 𝑇 ‘ 𝑃 ) Fn 𝐷 ) |
4 |
|
fndifnfp |
⊢ ( ( 𝑇 ‘ 𝑃 ) Fn 𝐷 → dom ( ( 𝑇 ‘ 𝑃 ) ∖ I ) = { 𝑧 ∈ 𝐷 ∣ ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) ≠ 𝑧 } ) |
5 |
2 3 4
|
3syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → dom ( ( 𝑇 ‘ 𝑃 ) ∖ I ) = { 𝑧 ∈ 𝐷 ∣ ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) ≠ 𝑧 } ) |
6 |
1
|
pmtrfv |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) → ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) = if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) |
7 |
6
|
neeq1d |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) → ( ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) ≠ 𝑧 ↔ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 ) ) |
8 |
|
iffalse |
⊢ ( ¬ 𝑧 ∈ 𝑃 → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) = 𝑧 ) |
9 |
8
|
necon1ai |
⊢ ( if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 → 𝑧 ∈ 𝑃 ) |
10 |
|
iftrue |
⊢ ( 𝑧 ∈ 𝑃 → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) = ∪ ( 𝑃 ∖ { 𝑧 } ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) = ∪ ( 𝑃 ∖ { 𝑧 } ) ) |
12 |
|
1onn |
⊢ 1o ∈ ω |
13 |
|
simpl3 |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → 𝑃 ≈ 2o ) |
14 |
|
df-2o |
⊢ 2o = suc 1o |
15 |
13 14
|
breqtrdi |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → 𝑃 ≈ suc 1o ) |
16 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → 𝑧 ∈ 𝑃 ) |
17 |
|
dif1en |
⊢ ( ( 1o ∈ ω ∧ 𝑃 ≈ suc 1o ∧ 𝑧 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≈ 1o ) |
18 |
12 15 16 17
|
mp3an2i |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → ( 𝑃 ∖ { 𝑧 } ) ≈ 1o ) |
19 |
|
en1uniel |
⊢ ( ( 𝑃 ∖ { 𝑧 } ) ≈ 1o → ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ ( 𝑃 ∖ { 𝑧 } ) ) |
20 |
|
eldifsni |
⊢ ( ∪ ( 𝑃 ∖ { 𝑧 } ) ∈ ( 𝑃 ∖ { 𝑧 } ) → ∪ ( 𝑃 ∖ { 𝑧 } ) ≠ 𝑧 ) |
21 |
18 19 20
|
3syl |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → ∪ ( 𝑃 ∖ { 𝑧 } ) ≠ 𝑧 ) |
22 |
11 21
|
eqnetrd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝑃 ) → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 ) |
23 |
22
|
ex |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑧 ∈ 𝑃 → if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 ) ) |
24 |
9 23
|
impbid2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) → ( if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃 ) ) |
26 |
7 25
|
bitrd |
⊢ ( ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) ∧ 𝑧 ∈ 𝐷 ) → ( ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) ≠ 𝑧 ↔ 𝑧 ∈ 𝑃 ) ) |
27 |
26
|
rabbidva |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → { 𝑧 ∈ 𝐷 ∣ ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) ≠ 𝑧 } = { 𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃 } ) |
28 |
|
incom |
⊢ ( 𝑃 ∩ 𝐷 ) = ( 𝐷 ∩ 𝑃 ) |
29 |
|
dfin5 |
⊢ ( 𝐷 ∩ 𝑃 ) = { 𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃 } |
30 |
28 29
|
eqtri |
⊢ ( 𝑃 ∩ 𝐷 ) = { 𝑧 ∈ 𝐷 ∣ 𝑧 ∈ 𝑃 } |
31 |
27 30
|
eqtr4di |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → { 𝑧 ∈ 𝐷 ∣ ( ( 𝑇 ‘ 𝑃 ) ‘ 𝑧 ) ≠ 𝑧 } = ( 𝑃 ∩ 𝐷 ) ) |
32 |
|
simp2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ⊆ 𝐷 ) |
33 |
|
df-ss |
⊢ ( 𝑃 ⊆ 𝐷 ↔ ( 𝑃 ∩ 𝐷 ) = 𝑃 ) |
34 |
32 33
|
sylib |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑃 ∩ 𝐷 ) = 𝑃 ) |
35 |
5 31 34
|
3eqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → dom ( ( 𝑇 ‘ 𝑃 ) ∖ I ) = 𝑃 ) |