Metamath Proof Explorer


Theorem pmtrprfv2

Description: In a transposition of two given points, each maps to the other. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypothesis pmtrprfv2.t 𝑇 = ( pmTrsp ‘ 𝐷 )
Assertion pmtrprfv2 ( ( 𝐷𝑉 ∧ ( 𝑋𝐷𝑌𝐷𝑋𝑌 ) ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑌 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 pmtrprfv2.t 𝑇 = ( pmTrsp ‘ 𝐷 )
2 prcom { 𝑌 , 𝑋 } = { 𝑋 , 𝑌 }
3 2 fveq2i ( 𝑇 ‘ { 𝑌 , 𝑋 } ) = ( 𝑇 ‘ { 𝑋 , 𝑌 } )
4 3 fveq1i ( ( 𝑇 ‘ { 𝑌 , 𝑋 } ) ‘ 𝑌 ) = ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑌 )
5 ancom ( ( 𝑋𝐷𝑌𝐷 ) ↔ ( 𝑌𝐷𝑋𝐷 ) )
6 necom ( 𝑋𝑌𝑌𝑋 )
7 5 6 anbi12i ( ( ( 𝑋𝐷𝑌𝐷 ) ∧ 𝑋𝑌 ) ↔ ( ( 𝑌𝐷𝑋𝐷 ) ∧ 𝑌𝑋 ) )
8 df-3an ( ( 𝑋𝐷𝑌𝐷𝑋𝑌 ) ↔ ( ( 𝑋𝐷𝑌𝐷 ) ∧ 𝑋𝑌 ) )
9 df-3an ( ( 𝑌𝐷𝑋𝐷𝑌𝑋 ) ↔ ( ( 𝑌𝐷𝑋𝐷 ) ∧ 𝑌𝑋 ) )
10 7 8 9 3bitr4i ( ( 𝑋𝐷𝑌𝐷𝑋𝑌 ) ↔ ( 𝑌𝐷𝑋𝐷𝑌𝑋 ) )
11 1 pmtrprfv ( ( 𝐷𝑉 ∧ ( 𝑌𝐷𝑋𝐷𝑌𝑋 ) ) → ( ( 𝑇 ‘ { 𝑌 , 𝑋 } ) ‘ 𝑌 ) = 𝑋 )
12 10 11 sylan2b ( ( 𝐷𝑉 ∧ ( 𝑋𝐷𝑌𝐷𝑋𝑌 ) ) → ( ( 𝑇 ‘ { 𝑌 , 𝑋 } ) ‘ 𝑌 ) = 𝑋 )
13 4 12 eqtr3id ( ( 𝐷𝑉 ∧ ( 𝑋𝐷𝑌𝐷𝑋𝑌 ) ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑌 ) = 𝑋 )