Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrprfv2.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
|
prcom |
⊢ { 𝑌 , 𝑋 } = { 𝑋 , 𝑌 } |
3 |
2
|
fveq2i |
⊢ ( 𝑇 ‘ { 𝑌 , 𝑋 } ) = ( 𝑇 ‘ { 𝑋 , 𝑌 } ) |
4 |
3
|
fveq1i |
⊢ ( ( 𝑇 ‘ { 𝑌 , 𝑋 } ) ‘ 𝑌 ) = ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑌 ) |
5 |
|
ancom |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ↔ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ) ) |
6 |
|
necom |
⊢ ( 𝑋 ≠ 𝑌 ↔ 𝑌 ≠ 𝑋 ) |
7 |
5 6
|
anbi12i |
⊢ ( ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ∧ 𝑋 ≠ 𝑌 ) ↔ ( ( 𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ) ∧ 𝑌 ≠ 𝑋 ) ) |
8 |
|
df-3an |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ↔ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ) ∧ 𝑋 ≠ 𝑌 ) ) |
9 |
|
df-3an |
⊢ ( ( 𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ≠ 𝑋 ) ↔ ( ( 𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ) ∧ 𝑌 ≠ 𝑋 ) ) |
10 |
7 8 9
|
3bitr4i |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ↔ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ≠ 𝑋 ) ) |
11 |
1
|
pmtrprfv |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ∧ 𝑌 ≠ 𝑋 ) ) → ( ( 𝑇 ‘ { 𝑌 , 𝑋 } ) ‘ 𝑌 ) = 𝑋 ) |
12 |
10 11
|
sylan2b |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑇 ‘ { 𝑌 , 𝑋 } ) ‘ 𝑌 ) = 𝑋 ) |
13 |
4 12
|
eqtr3id |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑌 ) = 𝑋 ) |