| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrprfv2.t | ⊢ 𝑇  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 2 |  | prcom | ⊢ { 𝑌 ,  𝑋 }  =  { 𝑋 ,  𝑌 } | 
						
							| 3 | 2 | fveq2i | ⊢ ( 𝑇 ‘ { 𝑌 ,  𝑋 } )  =  ( 𝑇 ‘ { 𝑋 ,  𝑌 } ) | 
						
							| 4 | 3 | fveq1i | ⊢ ( ( 𝑇 ‘ { 𝑌 ,  𝑋 } ) ‘ 𝑌 )  =  ( ( 𝑇 ‘ { 𝑋 ,  𝑌 } ) ‘ 𝑌 ) | 
						
							| 5 |  | ancom | ⊢ ( ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 )  ↔  ( 𝑌  ∈  𝐷  ∧  𝑋  ∈  𝐷 ) ) | 
						
							| 6 |  | necom | ⊢ ( 𝑋  ≠  𝑌  ↔  𝑌  ≠  𝑋 ) | 
						
							| 7 | 5 6 | anbi12i | ⊢ ( ( ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 )  ∧  𝑋  ≠  𝑌 )  ↔  ( ( 𝑌  ∈  𝐷  ∧  𝑋  ∈  𝐷 )  ∧  𝑌  ≠  𝑋 ) ) | 
						
							| 8 |  | df-3an | ⊢ ( ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 )  ↔  ( ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷 )  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 9 |  | df-3an | ⊢ ( ( 𝑌  ∈  𝐷  ∧  𝑋  ∈  𝐷  ∧  𝑌  ≠  𝑋 )  ↔  ( ( 𝑌  ∈  𝐷  ∧  𝑋  ∈  𝐷 )  ∧  𝑌  ≠  𝑋 ) ) | 
						
							| 10 | 7 8 9 | 3bitr4i | ⊢ ( ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 )  ↔  ( 𝑌  ∈  𝐷  ∧  𝑋  ∈  𝐷  ∧  𝑌  ≠  𝑋 ) ) | 
						
							| 11 | 1 | pmtrprfv | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑌  ∈  𝐷  ∧  𝑋  ∈  𝐷  ∧  𝑌  ≠  𝑋 ) )  →  ( ( 𝑇 ‘ { 𝑌 ,  𝑋 } ) ‘ 𝑌 )  =  𝑋 ) | 
						
							| 12 | 10 11 | sylan2b | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  ( ( 𝑇 ‘ { 𝑌 ,  𝑋 } ) ‘ 𝑌 )  =  𝑋 ) | 
						
							| 13 | 4 12 | eqtr3id | ⊢ ( ( 𝐷  ∈  𝑉  ∧  ( 𝑋  ∈  𝐷  ∧  𝑌  ∈  𝐷  ∧  𝑋  ≠  𝑌 ) )  →  ( ( 𝑇 ‘ { 𝑋 ,  𝑌 } ) ‘ 𝑌 )  =  𝑋 ) |