Step |
Hyp |
Ref |
Expression |
1 |
|
prex |
⊢ { 1 , 2 } ∈ V |
2 |
|
eqid |
⊢ ( pmTrsp ‘ { 1 , 2 } ) = ( pmTrsp ‘ { 1 , 2 } ) |
3 |
2
|
pmtrfval |
⊢ ( { 1 , 2 } ∈ V → ( pmTrsp ‘ { 1 , 2 } ) = ( 𝑝 ∈ { 𝑡 ∈ 𝒫 { 1 , 2 } ∣ 𝑡 ≈ 2o } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
4 |
1 3
|
ax-mp |
⊢ ( pmTrsp ‘ { 1 , 2 } ) = ( 𝑝 ∈ { 𝑡 ∈ 𝒫 { 1 , 2 } ∣ 𝑡 ≈ 2o } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
5 |
|
1ex |
⊢ 1 ∈ V |
6 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
7 |
|
1ne2 |
⊢ 1 ≠ 2 |
8 |
|
pr2pwpr |
⊢ ( ( 1 ∈ V ∧ 2 ∈ ℕ0 ∧ 1 ≠ 2 ) → { 𝑡 ∈ 𝒫 { 1 , 2 } ∣ 𝑡 ≈ 2o } = { { 1 , 2 } } ) |
9 |
5 6 7 8
|
mp3an |
⊢ { 𝑡 ∈ 𝒫 { 1 , 2 } ∣ 𝑡 ≈ 2o } = { { 1 , 2 } } |
10 |
9
|
mpteq1i |
⊢ ( 𝑝 ∈ { 𝑡 ∈ 𝒫 { 1 , 2 } ∣ 𝑡 ≈ 2o } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { { 1 , 2 } } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
11 |
|
elsni |
⊢ ( 𝑝 ∈ { { 1 , 2 } } → 𝑝 = { 1 , 2 } ) |
12 |
|
eleq2 |
⊢ ( 𝑝 = { 1 , 2 } → ( 𝑧 ∈ 𝑝 ↔ 𝑧 ∈ { 1 , 2 } ) ) |
13 |
12
|
biimpar |
⊢ ( ( 𝑝 = { 1 , 2 } ∧ 𝑧 ∈ { 1 , 2 } ) → 𝑧 ∈ 𝑝 ) |
14 |
13
|
iftrued |
⊢ ( ( 𝑝 = { 1 , 2 } ∧ 𝑧 ∈ { 1 , 2 } ) → if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) = ∪ ( 𝑝 ∖ { 𝑧 } ) ) |
15 |
|
elpri |
⊢ ( 𝑧 ∈ { 1 , 2 } → ( 𝑧 = 1 ∨ 𝑧 = 2 ) ) |
16 |
|
2ex |
⊢ 2 ∈ V |
17 |
16
|
unisn |
⊢ ∪ { 2 } = 2 |
18 |
|
simpr |
⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → 𝑝 = { 1 , 2 } ) |
19 |
|
sneq |
⊢ ( 𝑧 = 1 → { 𝑧 } = { 1 } ) |
20 |
19
|
adantr |
⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → { 𝑧 } = { 1 } ) |
21 |
18 20
|
difeq12d |
⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → ( 𝑝 ∖ { 𝑧 } ) = ( { 1 , 2 } ∖ { 1 } ) ) |
22 |
|
difprsn1 |
⊢ ( 1 ≠ 2 → ( { 1 , 2 } ∖ { 1 } ) = { 2 } ) |
23 |
7 22
|
ax-mp |
⊢ ( { 1 , 2 } ∖ { 1 } ) = { 2 } |
24 |
21 23
|
eqtrdi |
⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → ( 𝑝 ∖ { 𝑧 } ) = { 2 } ) |
25 |
24
|
unieqd |
⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → ∪ ( 𝑝 ∖ { 𝑧 } ) = ∪ { 2 } ) |
26 |
|
iftrue |
⊢ ( 𝑧 = 1 → if ( 𝑧 = 1 , 2 , 1 ) = 2 ) |
27 |
26
|
adantr |
⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → if ( 𝑧 = 1 , 2 , 1 ) = 2 ) |
28 |
17 25 27
|
3eqtr4a |
⊢ ( ( 𝑧 = 1 ∧ 𝑝 = { 1 , 2 } ) → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) |
29 |
28
|
ex |
⊢ ( 𝑧 = 1 → ( 𝑝 = { 1 , 2 } → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) ) |
30 |
5
|
unisn |
⊢ ∪ { 1 } = 1 |
31 |
|
simpr |
⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → 𝑝 = { 1 , 2 } ) |
32 |
|
sneq |
⊢ ( 𝑧 = 2 → { 𝑧 } = { 2 } ) |
33 |
32
|
adantr |
⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → { 𝑧 } = { 2 } ) |
34 |
31 33
|
difeq12d |
⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → ( 𝑝 ∖ { 𝑧 } ) = ( { 1 , 2 } ∖ { 2 } ) ) |
35 |
|
difprsn2 |
⊢ ( 1 ≠ 2 → ( { 1 , 2 } ∖ { 2 } ) = { 1 } ) |
36 |
7 35
|
ax-mp |
⊢ ( { 1 , 2 } ∖ { 2 } ) = { 1 } |
37 |
34 36
|
eqtrdi |
⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → ( 𝑝 ∖ { 𝑧 } ) = { 1 } ) |
38 |
37
|
unieqd |
⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → ∪ ( 𝑝 ∖ { 𝑧 } ) = ∪ { 1 } ) |
39 |
7
|
nesymi |
⊢ ¬ 2 = 1 |
40 |
|
eqeq1 |
⊢ ( 𝑧 = 2 → ( 𝑧 = 1 ↔ 2 = 1 ) ) |
41 |
39 40
|
mtbiri |
⊢ ( 𝑧 = 2 → ¬ 𝑧 = 1 ) |
42 |
41
|
iffalsed |
⊢ ( 𝑧 = 2 → if ( 𝑧 = 1 , 2 , 1 ) = 1 ) |
43 |
42
|
adantr |
⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → if ( 𝑧 = 1 , 2 , 1 ) = 1 ) |
44 |
30 38 43
|
3eqtr4a |
⊢ ( ( 𝑧 = 2 ∧ 𝑝 = { 1 , 2 } ) → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) |
45 |
44
|
ex |
⊢ ( 𝑧 = 2 → ( 𝑝 = { 1 , 2 } → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) ) |
46 |
29 45
|
jaoi |
⊢ ( ( 𝑧 = 1 ∨ 𝑧 = 2 ) → ( 𝑝 = { 1 , 2 } → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) ) |
47 |
15 46
|
syl |
⊢ ( 𝑧 ∈ { 1 , 2 } → ( 𝑝 = { 1 , 2 } → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) ) |
48 |
47
|
impcom |
⊢ ( ( 𝑝 = { 1 , 2 } ∧ 𝑧 ∈ { 1 , 2 } ) → ∪ ( 𝑝 ∖ { 𝑧 } ) = if ( 𝑧 = 1 , 2 , 1 ) ) |
49 |
14 48
|
eqtrd |
⊢ ( ( 𝑝 = { 1 , 2 } ∧ 𝑧 ∈ { 1 , 2 } ) → if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) = if ( 𝑧 = 1 , 2 , 1 ) ) |
50 |
11 49
|
sylan |
⊢ ( ( 𝑝 ∈ { { 1 , 2 } } ∧ 𝑧 ∈ { 1 , 2 } ) → if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) = if ( 𝑧 = 1 , 2 , 1 ) ) |
51 |
50
|
mpteq2dva |
⊢ ( 𝑝 ∈ { { 1 , 2 } } → ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) = ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 = 1 , 2 , 1 ) ) ) |
52 |
51
|
mpteq2ia |
⊢ ( 𝑝 ∈ { { 1 , 2 } } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { { 1 , 2 } } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 = 1 , 2 , 1 ) ) ) |
53 |
10 52
|
eqtri |
⊢ ( 𝑝 ∈ { 𝑡 ∈ 𝒫 { 1 , 2 } ∣ 𝑡 ≈ 2o } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { { 1 , 2 } } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 = 1 , 2 , 1 ) ) ) |
54 |
4 53
|
eqtri |
⊢ ( pmTrsp ‘ { 1 , 2 } ) = ( 𝑝 ∈ { { 1 , 2 } } ↦ ( 𝑧 ∈ { 1 , 2 } ↦ if ( 𝑧 = 1 , 2 , 1 ) ) ) |