Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrrn.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
|
pmtrrn.r |
⊢ 𝑅 = ran 𝑇 |
3 |
|
mptexg |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ∈ V ) |
4 |
3
|
ralrimivw |
⊢ ( 𝐷 ∈ 𝑉 → ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ∈ V ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ∈ V ) |
6 |
|
eqid |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) = ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) |
7 |
6
|
fnmpt |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ∈ V → ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
8 |
5 7
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
9 |
1
|
pmtrfval |
⊢ ( 𝐷 ∈ 𝑉 → 𝑇 = ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑇 = ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) ) |
11 |
10
|
fneq1d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↔ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) ) |
12 |
8 11
|
mpbird |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑇 Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
13 |
|
breq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 ≈ 2o ↔ 𝑃 ≈ 2o ) ) |
14 |
|
elpw2g |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝑃 ∈ 𝒫 𝐷 ↔ 𝑃 ⊆ 𝐷 ) ) |
15 |
14
|
biimpar |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ) → 𝑃 ∈ 𝒫 𝐷 ) |
16 |
15
|
3adant3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ 𝒫 𝐷 ) |
17 |
|
simp3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ 2o ) |
18 |
13 16 17
|
elrabd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
19 |
|
fnfvelrn |
⊢ ( ( 𝑇 Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ∧ 𝑃 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) → ( 𝑇 ‘ 𝑃 ) ∈ ran 𝑇 ) |
20 |
12 18 19
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) ∈ ran 𝑇 ) |
21 |
20 2
|
eleqtrrdi |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) ∈ 𝑅 ) |