| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtrrn.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
| 2 |
|
pmtrrn.r |
⊢ 𝑅 = ran 𝑇 |
| 3 |
|
mptexg |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ∈ V ) |
| 4 |
3
|
ralrimivw |
⊢ ( 𝐷 ∈ 𝑉 → ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ∈ V ) |
| 5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ∈ V ) |
| 6 |
|
eqid |
⊢ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) = ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) |
| 7 |
6
|
fnmpt |
⊢ ( ∀ 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ∈ V → ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
| 8 |
5 7
|
syl |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
| 9 |
1
|
pmtrfval |
⊢ ( 𝐷 ∈ 𝑉 → 𝑇 = ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) ) |
| 10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑇 = ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) ) |
| 11 |
10
|
fneq1d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↔ ( 𝑧 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ↦ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 ∈ 𝑧 , ∪ ( 𝑧 ∖ { 𝑦 } ) , 𝑦 ) ) ) Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) ) |
| 12 |
8 11
|
mpbird |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑇 Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
| 13 |
|
breq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 ≈ 2o ↔ 𝑃 ≈ 2o ) ) |
| 14 |
|
elpw2g |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝑃 ∈ 𝒫 𝐷 ↔ 𝑃 ⊆ 𝐷 ) ) |
| 15 |
14
|
biimpar |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ) → 𝑃 ∈ 𝒫 𝐷 ) |
| 16 |
15
|
3adant3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ 𝒫 𝐷 ) |
| 17 |
|
simp3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ 2o ) |
| 18 |
13 16 17
|
elrabd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) |
| 19 |
|
fnfvelrn |
⊢ ( ( 𝑇 Fn { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ∧ 𝑃 ∈ { 𝑥 ∈ 𝒫 𝐷 ∣ 𝑥 ≈ 2o } ) → ( 𝑇 ‘ 𝑃 ) ∈ ran 𝑇 ) |
| 20 |
12 18 19
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) ∈ ran 𝑇 ) |
| 21 |
20 2
|
eleqtrrdi |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) ∈ 𝑅 ) |