| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrrn.t | ⊢ 𝑇  =  ( pmTrsp ‘ 𝐷 ) | 
						
							| 2 |  | pmtrrn.r | ⊢ 𝑅  =  ran  𝑇 | 
						
							| 3 |  | mptexg | ⊢ ( 𝐷  ∈  𝑉  →  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑧 ,  ∪  ( 𝑧  ∖  { 𝑦 } ) ,  𝑦 ) )  ∈  V ) | 
						
							| 4 | 3 | ralrimivw | ⊢ ( 𝐷  ∈  𝑉  →  ∀ 𝑧  ∈  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o } ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑧 ,  ∪  ( 𝑧  ∖  { 𝑦 } ) ,  𝑦 ) )  ∈  V ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o )  →  ∀ 𝑧  ∈  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o } ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑧 ,  ∪  ( 𝑧  ∖  { 𝑦 } ) ,  𝑦 ) )  ∈  V ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑧  ∈  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o }  ↦  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑧 ,  ∪  ( 𝑧  ∖  { 𝑦 } ) ,  𝑦 ) ) )  =  ( 𝑧  ∈  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o }  ↦  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑧 ,  ∪  ( 𝑧  ∖  { 𝑦 } ) ,  𝑦 ) ) ) | 
						
							| 7 | 6 | fnmpt | ⊢ ( ∀ 𝑧  ∈  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o } ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑧 ,  ∪  ( 𝑧  ∖  { 𝑦 } ) ,  𝑦 ) )  ∈  V  →  ( 𝑧  ∈  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o }  ↦  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑧 ,  ∪  ( 𝑧  ∖  { 𝑦 } ) ,  𝑦 ) ) )  Fn  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o } ) | 
						
							| 8 | 5 7 | syl | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o )  →  ( 𝑧  ∈  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o }  ↦  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑧 ,  ∪  ( 𝑧  ∖  { 𝑦 } ) ,  𝑦 ) ) )  Fn  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o } ) | 
						
							| 9 | 1 | pmtrfval | ⊢ ( 𝐷  ∈  𝑉  →  𝑇  =  ( 𝑧  ∈  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o }  ↦  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑧 ,  ∪  ( 𝑧  ∖  { 𝑦 } ) ,  𝑦 ) ) ) ) | 
						
							| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o )  →  𝑇  =  ( 𝑧  ∈  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o }  ↦  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑧 ,  ∪  ( 𝑧  ∖  { 𝑦 } ) ,  𝑦 ) ) ) ) | 
						
							| 11 | 10 | fneq1d | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o )  →  ( 𝑇  Fn  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o }  ↔  ( 𝑧  ∈  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o }  ↦  ( 𝑦  ∈  𝐷  ↦  if ( 𝑦  ∈  𝑧 ,  ∪  ( 𝑧  ∖  { 𝑦 } ) ,  𝑦 ) ) )  Fn  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o } ) ) | 
						
							| 12 | 8 11 | mpbird | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o )  →  𝑇  Fn  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o } ) | 
						
							| 13 |  | breq1 | ⊢ ( 𝑥  =  𝑃  →  ( 𝑥  ≈  2o  ↔  𝑃  ≈  2o ) ) | 
						
							| 14 |  | elpw2g | ⊢ ( 𝐷  ∈  𝑉  →  ( 𝑃  ∈  𝒫  𝐷  ↔  𝑃  ⊆  𝐷 ) ) | 
						
							| 15 | 14 | biimpar | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ⊆  𝐷 )  →  𝑃  ∈  𝒫  𝐷 ) | 
						
							| 16 | 15 | 3adant3 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o )  →  𝑃  ∈  𝒫  𝐷 ) | 
						
							| 17 |  | simp3 | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o )  →  𝑃  ≈  2o ) | 
						
							| 18 | 13 16 17 | elrabd | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o )  →  𝑃  ∈  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o } ) | 
						
							| 19 |  | fnfvelrn | ⊢ ( ( 𝑇  Fn  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o }  ∧  𝑃  ∈  { 𝑥  ∈  𝒫  𝐷  ∣  𝑥  ≈  2o } )  →  ( 𝑇 ‘ 𝑃 )  ∈  ran  𝑇 ) | 
						
							| 20 | 12 18 19 | syl2anc | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o )  →  ( 𝑇 ‘ 𝑃 )  ∈  ran  𝑇 ) | 
						
							| 21 | 20 2 | eleqtrrdi | ⊢ ( ( 𝐷  ∈  𝑉  ∧  𝑃  ⊆  𝐷  ∧  𝑃  ≈  2o )  →  ( 𝑇 ‘ 𝑃 )  ∈  𝑅 ) |