Metamath Proof Explorer


Theorem pmtrsn

Description: The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for A e/ _V , i.e. for the empty set { A } = (/) resulting in ( pmTrsp(/) ) = (/) . (Contributed by AV, 6-Aug-2019)

Ref Expression
Assertion pmtrsn ( pmTrsp ‘ { 𝐴 } ) = ∅

Proof

Step Hyp Ref Expression
1 snex { 𝐴 } ∈ V
2 eqid ( pmTrsp ‘ { 𝐴 } ) = ( pmTrsp ‘ { 𝐴 } )
3 2 pmtrfval ( { 𝐴 } ∈ V → ( pmTrsp ‘ { 𝐴 } ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) )
4 1 3 ax-mp ( pmTrsp ‘ { 𝐴 } ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) )
5 eqid ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) )
6 5 dmmpt dom ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = { 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ∣ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V }
7 2on0 2o ≠ ∅
8 ensymb ( ∅ ≈ 2o ↔ 2o ≈ ∅ )
9 en0 ( 2o ≈ ∅ ↔ 2o = ∅ )
10 8 9 bitri ( ∅ ≈ 2o ↔ 2o = ∅ )
11 7 10 nemtbir ¬ ∅ ≈ 2o
12 snnen2o ¬ { 𝐴 } ≈ 2o
13 0ex ∅ ∈ V
14 breq1 ( 𝑦 = ∅ → ( 𝑦 ≈ 2o ↔ ∅ ≈ 2o ) )
15 14 notbid ( 𝑦 = ∅ → ( ¬ 𝑦 ≈ 2o ↔ ¬ ∅ ≈ 2o ) )
16 breq1 ( 𝑦 = { 𝐴 } → ( 𝑦 ≈ 2o ↔ { 𝐴 } ≈ 2o ) )
17 16 notbid ( 𝑦 = { 𝐴 } → ( ¬ 𝑦 ≈ 2o ↔ ¬ { 𝐴 } ≈ 2o ) )
18 13 1 15 17 ralpr ( ∀ 𝑦 ∈ { ∅ , { 𝐴 } } ¬ 𝑦 ≈ 2o ↔ ( ¬ ∅ ≈ 2o ∧ ¬ { 𝐴 } ≈ 2o ) )
19 11 12 18 mpbir2an 𝑦 ∈ { ∅ , { 𝐴 } } ¬ 𝑦 ≈ 2o
20 pwsn 𝒫 { 𝐴 } = { ∅ , { 𝐴 } }
21 20 raleqi ( ∀ 𝑦 ∈ 𝒫 { 𝐴 } ¬ 𝑦 ≈ 2o ↔ ∀ 𝑦 ∈ { ∅ , { 𝐴 } } ¬ 𝑦 ≈ 2o )
22 19 21 mpbir 𝑦 ∈ 𝒫 { 𝐴 } ¬ 𝑦 ≈ 2o
23 rabeq0 ( { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } = ∅ ↔ ∀ 𝑦 ∈ 𝒫 { 𝐴 } ¬ 𝑦 ≈ 2o )
24 22 23 mpbir { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } = ∅
25 24 rabeqi { 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ∣ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V } = { 𝑝 ∈ ∅ ∣ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V }
26 rab0 { 𝑝 ∈ ∅ ∣ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V } = ∅
27 6 25 26 3eqtri dom ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅
28 mptrel Rel ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) )
29 reldm0 ( Rel ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ( ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ ↔ dom ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ ) )
30 28 29 ax-mp ( ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ ↔ dom ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ )
31 27 30 mpbir ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧𝑝 , ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅
32 4 31 eqtri ( pmTrsp ‘ { 𝐴 } ) = ∅