Step |
Hyp |
Ref |
Expression |
1 |
|
snex |
⊢ { 𝐴 } ∈ V |
2 |
|
eqid |
⊢ ( pmTrsp ‘ { 𝐴 } ) = ( pmTrsp ‘ { 𝐴 } ) |
3 |
2
|
pmtrfval |
⊢ ( { 𝐴 } ∈ V → ( pmTrsp ‘ { 𝐴 } ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
4 |
1 3
|
ax-mp |
⊢ ( pmTrsp ‘ { 𝐴 } ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
5 |
|
eqid |
⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
6 |
5
|
dmmpt |
⊢ dom ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = { 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ∣ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V } |
7 |
|
2on0 |
⊢ 2o ≠ ∅ |
8 |
|
ensymb |
⊢ ( ∅ ≈ 2o ↔ 2o ≈ ∅ ) |
9 |
|
en0 |
⊢ ( 2o ≈ ∅ ↔ 2o = ∅ ) |
10 |
8 9
|
bitri |
⊢ ( ∅ ≈ 2o ↔ 2o = ∅ ) |
11 |
7 10
|
nemtbir |
⊢ ¬ ∅ ≈ 2o |
12 |
|
snnen2o |
⊢ ¬ { 𝐴 } ≈ 2o |
13 |
|
0ex |
⊢ ∅ ∈ V |
14 |
|
breq1 |
⊢ ( 𝑦 = ∅ → ( 𝑦 ≈ 2o ↔ ∅ ≈ 2o ) ) |
15 |
14
|
notbid |
⊢ ( 𝑦 = ∅ → ( ¬ 𝑦 ≈ 2o ↔ ¬ ∅ ≈ 2o ) ) |
16 |
|
breq1 |
⊢ ( 𝑦 = { 𝐴 } → ( 𝑦 ≈ 2o ↔ { 𝐴 } ≈ 2o ) ) |
17 |
16
|
notbid |
⊢ ( 𝑦 = { 𝐴 } → ( ¬ 𝑦 ≈ 2o ↔ ¬ { 𝐴 } ≈ 2o ) ) |
18 |
13 1 15 17
|
ralpr |
⊢ ( ∀ 𝑦 ∈ { ∅ , { 𝐴 } } ¬ 𝑦 ≈ 2o ↔ ( ¬ ∅ ≈ 2o ∧ ¬ { 𝐴 } ≈ 2o ) ) |
19 |
11 12 18
|
mpbir2an |
⊢ ∀ 𝑦 ∈ { ∅ , { 𝐴 } } ¬ 𝑦 ≈ 2o |
20 |
|
pwsn |
⊢ 𝒫 { 𝐴 } = { ∅ , { 𝐴 } } |
21 |
20
|
raleqi |
⊢ ( ∀ 𝑦 ∈ 𝒫 { 𝐴 } ¬ 𝑦 ≈ 2o ↔ ∀ 𝑦 ∈ { ∅ , { 𝐴 } } ¬ 𝑦 ≈ 2o ) |
22 |
19 21
|
mpbir |
⊢ ∀ 𝑦 ∈ 𝒫 { 𝐴 } ¬ 𝑦 ≈ 2o |
23 |
|
rabeq0 |
⊢ ( { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } = ∅ ↔ ∀ 𝑦 ∈ 𝒫 { 𝐴 } ¬ 𝑦 ≈ 2o ) |
24 |
22 23
|
mpbir |
⊢ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } = ∅ |
25 |
24
|
rabeqi |
⊢ { 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ∣ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V } = { 𝑝 ∈ ∅ ∣ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V } |
26 |
|
rab0 |
⊢ { 𝑝 ∈ ∅ ∣ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V } = ∅ |
27 |
6 25 26
|
3eqtri |
⊢ dom ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ |
28 |
|
mptrel |
⊢ Rel ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
29 |
|
reldm0 |
⊢ ( Rel ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) → ( ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ ↔ dom ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ ) ) |
30 |
28 29
|
ax-mp |
⊢ ( ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ ↔ dom ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ ) |
31 |
27 30
|
mpbir |
⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 { 𝐴 } ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ { 𝐴 } ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ∅ |
32 |
4 31
|
eqtri |
⊢ ( pmTrsp ‘ { 𝐴 } ) = ∅ |