Step |
Hyp |
Ref |
Expression |
1 |
|
pmtrfval.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
2 |
1
|
pmtrfval |
⊢ ( 𝐷 ∈ 𝑉 → 𝑇 = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝑇 ‘ 𝑃 ) = ( ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ‘ 𝑃 ) ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) = ( ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ‘ 𝑃 ) ) |
5 |
|
eqid |
⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) = ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
6 |
|
eleq2 |
⊢ ( 𝑝 = 𝑃 → ( 𝑧 ∈ 𝑝 ↔ 𝑧 ∈ 𝑃 ) ) |
7 |
|
difeq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∖ { 𝑧 } ) = ( 𝑃 ∖ { 𝑧 } ) ) |
8 |
7
|
unieqd |
⊢ ( 𝑝 = 𝑃 → ∪ ( 𝑝 ∖ { 𝑧 } ) = ∪ ( 𝑃 ∖ { 𝑧 } ) ) |
9 |
6 8
|
ifbieq1d |
⊢ ( 𝑝 = 𝑃 → if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) = if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) |
10 |
9
|
mpteq2dv |
⊢ ( 𝑝 = 𝑃 → ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
11 |
|
breq1 |
⊢ ( 𝑦 = 𝑃 → ( 𝑦 ≈ 2o ↔ 𝑃 ≈ 2o ) ) |
12 |
|
elpw2g |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝑃 ∈ 𝒫 𝐷 ↔ 𝑃 ⊆ 𝐷 ) ) |
13 |
12
|
biimpar |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ) → 𝑃 ∈ 𝒫 𝐷 ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ 𝒫 𝐷 ) |
15 |
|
simp3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ≈ 2o ) |
16 |
11 14 15
|
elrabd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → 𝑃 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ) |
17 |
|
mptexg |
⊢ ( 𝐷 ∈ 𝑉 → ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ∈ V ) |
19 |
5 10 16 18
|
fvmptd3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝐷 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ‘ 𝑃 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
20 |
4 19
|
eqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ 𝑃 ⊆ 𝐷 ∧ 𝑃 ≈ 2o ) → ( 𝑇 ‘ 𝑃 ) = ( 𝑧 ∈ 𝐷 ↦ if ( 𝑧 ∈ 𝑃 , ∪ ( 𝑃 ∖ { 𝑧 } ) , 𝑧 ) ) ) |