Metamath Proof Explorer


Theorem pmvalg

Description: The value of the partial mapping operation. ( A ^pm B ) is the set of all partial functions that map from B to A . (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion pmvalg ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } )

Proof

Step Hyp Ref Expression
1 ssrab2 { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ⊆ 𝒫 ( 𝐵 × 𝐴 )
2 xpexg ( ( 𝐵𝐷𝐴𝐶 ) → ( 𝐵 × 𝐴 ) ∈ V )
3 2 ancoms ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐵 × 𝐴 ) ∈ V )
4 3 pwexd ( ( 𝐴𝐶𝐵𝐷 ) → 𝒫 ( 𝐵 × 𝐴 ) ∈ V )
5 ssexg ( ( { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ⊆ 𝒫 ( 𝐵 × 𝐴 ) ∧ 𝒫 ( 𝐵 × 𝐴 ) ∈ V ) → { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V )
6 1 4 5 sylancr ( ( 𝐴𝐶𝐵𝐷 ) → { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V )
7 elex ( 𝐴𝐶𝐴 ∈ V )
8 elex ( 𝐵𝐷𝐵 ∈ V )
9 xpeq2 ( 𝑥 = 𝐴 → ( 𝑦 × 𝑥 ) = ( 𝑦 × 𝐴 ) )
10 9 pweqd ( 𝑥 = 𝐴 → 𝒫 ( 𝑦 × 𝑥 ) = 𝒫 ( 𝑦 × 𝐴 ) )
11 10 rabeqdv ( 𝑥 = 𝐴 → { 𝑓 ∈ 𝒫 ( 𝑦 × 𝑥 ) ∣ Fun 𝑓 } = { 𝑓 ∈ 𝒫 ( 𝑦 × 𝐴 ) ∣ Fun 𝑓 } )
12 xpeq1 ( 𝑦 = 𝐵 → ( 𝑦 × 𝐴 ) = ( 𝐵 × 𝐴 ) )
13 12 pweqd ( 𝑦 = 𝐵 → 𝒫 ( 𝑦 × 𝐴 ) = 𝒫 ( 𝐵 × 𝐴 ) )
14 13 rabeqdv ( 𝑦 = 𝐵 → { 𝑓 ∈ 𝒫 ( 𝑦 × 𝐴 ) ∣ Fun 𝑓 } = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } )
15 df-pm pm = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 𝑓 ∈ 𝒫 ( 𝑦 × 𝑥 ) ∣ Fun 𝑓 } )
16 11 14 15 ovmpog ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V ) → ( 𝐴pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } )
17 16 3expia ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V → ( 𝐴pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) )
18 7 8 17 syl2an ( ( 𝐴𝐶𝐵𝐷 ) → ( { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ∈ V → ( 𝐴pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } ) )
19 6 18 mpd ( ( 𝐴𝐶𝐵𝐷 ) → ( 𝐴pm 𝐵 ) = { 𝑓 ∈ 𝒫 ( 𝐵 × 𝐴 ) ∣ Fun 𝑓 } )