Metamath Proof Explorer


Theorem pn0sr

Description: A signed real plus its negative is zero. (Contributed by NM, 14-May-1996) (New usage is discouraged.)

Ref Expression
Assertion pn0sr ( 𝐴R → ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R )

Proof

Step Hyp Ref Expression
1 1idsr ( 𝐴R → ( 𝐴 ·R 1R ) = 𝐴 )
2 1 oveq1d ( 𝐴R → ( ( 𝐴 ·R 1R ) +R ( 𝐴 ·R -1R ) ) = ( 𝐴 +R ( 𝐴 ·R -1R ) ) )
3 distrsr ( 𝐴 ·R ( -1R +R 1R ) ) = ( ( 𝐴 ·R -1R ) +R ( 𝐴 ·R 1R ) )
4 m1p1sr ( -1R +R 1R ) = 0R
5 4 oveq2i ( 𝐴 ·R ( -1R +R 1R ) ) = ( 𝐴 ·R 0R )
6 addcomsr ( ( 𝐴 ·R -1R ) +R ( 𝐴 ·R 1R ) ) = ( ( 𝐴 ·R 1R ) +R ( 𝐴 ·R -1R ) )
7 3 5 6 3eqtr3i ( 𝐴 ·R 0R ) = ( ( 𝐴 ·R 1R ) +R ( 𝐴 ·R -1R ) )
8 00sr ( 𝐴R → ( 𝐴 ·R 0R ) = 0R )
9 7 8 eqtr3id ( 𝐴R → ( ( 𝐴 ·R 1R ) +R ( 𝐴 ·R -1R ) ) = 0R )
10 2 9 eqtr3d ( 𝐴R → ( 𝐴 +R ( 𝐴 ·R -1R ) ) = 0R )