Metamath Proof Explorer


Theorem pncan

Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion pncan ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ )
2 simpl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ )
3 1 2 addcomd ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) )
4 addcl ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ )
5 subadd ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ↔ ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) ) )
6 4 1 2 5 syl3anc ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ↔ ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) ) )
7 3 6 mpbird ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 )