Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004) (Revised by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | pncan | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
2 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
3 | 1 2 | addcomd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) ) |
4 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
5 | subadd | ⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ↔ ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) ) ) | |
6 | 4 1 2 5 | syl3anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ↔ ( 𝐵 + 𝐴 ) = ( 𝐴 + 𝐵 ) ) ) |
7 | 3 6 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |