Metamath Proof Explorer


Theorem pncan2s

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion pncan2s ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 +s 𝐵 ) -s 𝐴 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 eqid ( 𝐴 +s 𝐵 ) = ( 𝐴 +s 𝐵 )
2 addscl ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s 𝐵 ) ∈ No )
3 simpl ( ( 𝐴 No 𝐵 No ) → 𝐴 No )
4 simpr ( ( 𝐴 No 𝐵 No ) → 𝐵 No )
5 2 3 4 subaddsd ( ( 𝐴 No 𝐵 No ) → ( ( ( 𝐴 +s 𝐵 ) -s 𝐴 ) = 𝐵 ↔ ( 𝐴 +s 𝐵 ) = ( 𝐴 +s 𝐵 ) ) )
6 1 5 mpbiri ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 +s 𝐵 ) -s 𝐴 ) = 𝐵 )