Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 16-Apr-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | pncan2s | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 +s 𝐵 ) -s 𝐴 ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( 𝐴 +s 𝐵 ) = ( 𝐴 +s 𝐵 ) | |
2 | addscl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) ∈ No ) | |
3 | simpl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ No ) | |
4 | simpr | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) | |
5 | 2 3 4 | subaddsd | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( ( 𝐴 +s 𝐵 ) -s 𝐴 ) = 𝐵 ↔ ( 𝐴 +s 𝐵 ) = ( 𝐴 +s 𝐵 ) ) ) |
6 | 1 5 | mpbiri | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 +s 𝐵 ) -s 𝐴 ) = 𝐵 ) |