Description: Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005) (Proof shortened by Steven Nguyen, 8-Jan-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pncan3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐵 − 𝐴 ) ) = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐵 − 𝐴 ) ∈ ℂ ) | |
| 2 | eqid | ⊢ ( 𝐵 − 𝐴 ) = ( 𝐵 − 𝐴 ) | |
| 3 | subadd | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 𝐵 − 𝐴 ) ∈ ℂ ) → ( ( 𝐵 − 𝐴 ) = ( 𝐵 − 𝐴 ) ↔ ( 𝐴 + ( 𝐵 − 𝐴 ) ) = 𝐵 ) ) | |
| 4 | 2 3 | mpbii | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ( 𝐵 − 𝐴 ) ∈ ℂ ) → ( 𝐴 + ( 𝐵 − 𝐴 ) ) = 𝐵 ) |
| 5 | 1 4 | mpd3an3 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 + ( 𝐵 − 𝐴 ) ) = 𝐵 ) |
| 6 | 5 | ancoms | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + ( 𝐵 − 𝐴 ) ) = 𝐵 ) |