Metamath Proof Explorer


Theorem pncan3s

Description: Subtraction and addition of equals. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion pncan3s ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 eqid ( 𝐵 -s 𝐴 ) = ( 𝐵 -s 𝐴 )
2 simpr ( ( 𝐴 No 𝐵 No ) → 𝐵 No )
3 simpl ( ( 𝐴 No 𝐵 No ) → 𝐴 No )
4 2 3 subscld ( ( 𝐴 No 𝐵 No ) → ( 𝐵 -s 𝐴 ) ∈ No )
5 2 3 4 subaddsd ( ( 𝐴 No 𝐵 No ) → ( ( 𝐵 -s 𝐴 ) = ( 𝐵 -s 𝐴 ) ↔ ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 ) )
6 1 5 mpbii ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 )