Description: Subtraction and addition of equals. (Contributed by Scott Fenton, 4-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | pncan3s | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( 𝐵 -s 𝐴 ) = ( 𝐵 -s 𝐴 ) | |
2 | simpr | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) | |
3 | simpl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ No ) | |
4 | 2 3 | subscld | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐵 -s 𝐴 ) ∈ No ) |
5 | 2 3 4 | subaddsd | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐵 -s 𝐴 ) = ( 𝐵 -s 𝐴 ) ↔ ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 ) ) |
6 | 1 5 | mpbii | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s ( 𝐵 -s 𝐴 ) ) = 𝐵 ) |