Metamath Proof Explorer


Theorem pncans

Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025)

Ref Expression
Assertion pncans ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 +s 𝐵 ) -s 𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 addscom ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) )
2 1 eqcomd ( ( 𝐴 No 𝐵 No ) → ( 𝐵 +s 𝐴 ) = ( 𝐴 +s 𝐵 ) )
3 addscl ( ( 𝐴 No 𝐵 No ) → ( 𝐴 +s 𝐵 ) ∈ No )
4 simpr ( ( 𝐴 No 𝐵 No ) → 𝐵 No )
5 simpl ( ( 𝐴 No 𝐵 No ) → 𝐴 No )
6 3 4 5 subaddsd ( ( 𝐴 No 𝐵 No ) → ( ( ( 𝐴 +s 𝐵 ) -s 𝐵 ) = 𝐴 ↔ ( 𝐵 +s 𝐴 ) = ( 𝐴 +s 𝐵 ) ) )
7 2 6 mpbird ( ( 𝐴 No 𝐵 No ) → ( ( 𝐴 +s 𝐵 ) -s 𝐵 ) = 𝐴 )