Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | pncans | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 +s 𝐵 ) -s 𝐵 ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addscom | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) ) | |
2 | 1 | eqcomd | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐵 +s 𝐴 ) = ( 𝐴 +s 𝐵 ) ) |
3 | addscl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 +s 𝐵 ) ∈ No ) | |
4 | simpr | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) | |
5 | simpl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ No ) | |
6 | 3 4 5 | subaddsd | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( ( 𝐴 +s 𝐵 ) -s 𝐵 ) = 𝐴 ↔ ( 𝐵 +s 𝐴 ) = ( 𝐴 +s 𝐵 ) ) ) |
7 | 2 6 | mpbird | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( ( 𝐴 +s 𝐵 ) -s 𝐵 ) = 𝐴 ) |