Metamath Proof Explorer


Theorem pnfex

Description: Plus infinity exists. (Contributed by David A. Wheeler, 8-Dec-2018) (Revised by Steven Nguyen, 7-Dec-2022)

Ref Expression
Assertion pnfex +∞ ∈ V

Proof

Step Hyp Ref Expression
1 df-pnf +∞ = 𝒫
2 cnex ℂ ∈ V
3 2 uniex ℂ ∈ V
4 3 pwex 𝒫 ℂ ∈ V
5 1 4 eqeltri +∞ ∈ V