| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) |
| 2 |
|
eqid |
⊢ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) |
| 3 |
|
eqid |
⊢ ran (,) = ran (,) |
| 4 |
1 2 3
|
leordtval |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) |
| 5 |
4
|
eleq2i |
⊢ ( 𝐴 ∈ ( ordTop ‘ ≤ ) ↔ 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ) |
| 6 |
|
tg2 |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ∧ +∞ ∈ 𝐴 ) → ∃ 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ) |
| 7 |
|
elun |
⊢ ( 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ↔ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∨ 𝑢 ∈ ran (,) ) ) |
| 8 |
|
elun |
⊢ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ↔ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∨ 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) |
| 9 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) |
| 10 |
9
|
elrnmpt |
⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) ) ) |
| 11 |
10
|
elv |
⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) ) |
| 12 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
| 13 |
12
|
a1i |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → -∞ ∈ ℝ* ) |
| 14 |
|
simprl |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑦 ∈ ℝ* ) |
| 15 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 16 |
|
ifcl |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 0 ∈ ℝ* ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ) |
| 17 |
14 15 16
|
sylancl |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ) |
| 18 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 19 |
18
|
a1i |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → +∞ ∈ ℝ* ) |
| 20 |
|
xrmax1 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
| 21 |
15 14 20
|
sylancr |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
| 22 |
|
ge0gtmnf |
⊢ ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ∧ 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) → -∞ < if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
| 23 |
17 21 22
|
syl2anc |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → -∞ < if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
| 24 |
|
simpll |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → +∞ ∈ 𝑢 ) |
| 25 |
|
simprr |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑢 = ( 𝑦 (,] +∞ ) ) |
| 26 |
24 25
|
eleqtrd |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → +∞ ∈ ( 𝑦 (,] +∞ ) ) |
| 27 |
|
elioc1 |
⊢ ( ( 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( +∞ ∈ ( 𝑦 (,] +∞ ) ↔ ( +∞ ∈ ℝ* ∧ 𝑦 < +∞ ∧ +∞ ≤ +∞ ) ) ) |
| 28 |
14 18 27
|
sylancl |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( +∞ ∈ ( 𝑦 (,] +∞ ) ↔ ( +∞ ∈ ℝ* ∧ 𝑦 < +∞ ∧ +∞ ≤ +∞ ) ) ) |
| 29 |
26 28
|
mpbid |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( +∞ ∈ ℝ* ∧ 𝑦 < +∞ ∧ +∞ ≤ +∞ ) ) |
| 30 |
29
|
simp2d |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑦 < +∞ ) |
| 31 |
|
0ltpnf |
⊢ 0 < +∞ |
| 32 |
|
breq1 |
⊢ ( 𝑦 = if ( 0 ≤ 𝑦 , 𝑦 , 0 ) → ( 𝑦 < +∞ ↔ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) ) |
| 33 |
|
breq1 |
⊢ ( 0 = if ( 0 ≤ 𝑦 , 𝑦 , 0 ) → ( 0 < +∞ ↔ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) ) |
| 34 |
32 33
|
ifboth |
⊢ ( ( 𝑦 < +∞ ∧ 0 < +∞ ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) |
| 35 |
30 31 34
|
sylancl |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) |
| 36 |
|
xrre2 |
⊢ ( ( ( -∞ ∈ ℝ* ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) |
| 37 |
13 17 19 23 35 36
|
syl32anc |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) |
| 38 |
|
xrmax2 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
| 39 |
15 14 38
|
sylancr |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
| 40 |
|
df-ioc |
⊢ (,] = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 < 𝑐 ∧ 𝑐 ≤ 𝑏 ) } ) |
| 41 |
|
xrlelttr |
⊢ ( ( 𝑦 ∈ ℝ* ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < 𝑥 ) → 𝑦 < 𝑥 ) ) |
| 42 |
40 40 41
|
ixxss1 |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ ( 𝑦 (,] +∞ ) ) |
| 43 |
14 39 42
|
syl2anc |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ ( 𝑦 (,] +∞ ) ) |
| 44 |
|
simplr |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑢 ⊆ 𝐴 ) |
| 45 |
25 44
|
eqsstrrd |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( 𝑦 (,] +∞ ) ⊆ 𝐴 ) |
| 46 |
43 45
|
sstrd |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ 𝐴 ) |
| 47 |
|
oveq1 |
⊢ ( 𝑥 = if ( 0 ≤ 𝑦 , 𝑦 , 0 ) → ( 𝑥 (,] +∞ ) = ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ) |
| 48 |
47
|
sseq1d |
⊢ ( 𝑥 = if ( 0 ≤ 𝑦 , 𝑦 , 0 ) → ( ( 𝑥 (,] +∞ ) ⊆ 𝐴 ↔ ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ 𝐴 ) ) |
| 49 |
48
|
rspcev |
⊢ ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ∧ ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
| 50 |
37 46 49
|
syl2anc |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
| 51 |
50
|
rexlimdvaa |
⊢ ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 52 |
51
|
com12 |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 53 |
11 52
|
sylbi |
⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 54 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) |
| 55 |
54
|
elrnmpt |
⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) ) ) |
| 56 |
55
|
elv |
⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) ) |
| 57 |
|
pnfnlt |
⊢ ( 𝑦 ∈ ℝ* → ¬ +∞ < 𝑦 ) |
| 58 |
|
elico1 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( +∞ ∈ ( -∞ [,) 𝑦 ) ↔ ( +∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦 ) ) ) |
| 59 |
12 58
|
mpan |
⊢ ( 𝑦 ∈ ℝ* → ( +∞ ∈ ( -∞ [,) 𝑦 ) ↔ ( +∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦 ) ) ) |
| 60 |
|
simp3 |
⊢ ( ( +∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦 ) → +∞ < 𝑦 ) |
| 61 |
59 60
|
biimtrdi |
⊢ ( 𝑦 ∈ ℝ* → ( +∞ ∈ ( -∞ [,) 𝑦 ) → +∞ < 𝑦 ) ) |
| 62 |
57 61
|
mtod |
⊢ ( 𝑦 ∈ ℝ* → ¬ +∞ ∈ ( -∞ [,) 𝑦 ) ) |
| 63 |
|
eleq2 |
⊢ ( 𝑢 = ( -∞ [,) 𝑦 ) → ( +∞ ∈ 𝑢 ↔ +∞ ∈ ( -∞ [,) 𝑦 ) ) ) |
| 64 |
63
|
notbid |
⊢ ( 𝑢 = ( -∞ [,) 𝑦 ) → ( ¬ +∞ ∈ 𝑢 ↔ ¬ +∞ ∈ ( -∞ [,) 𝑦 ) ) ) |
| 65 |
62 64
|
syl5ibrcom |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑢 = ( -∞ [,) 𝑦 ) → ¬ +∞ ∈ 𝑢 ) ) |
| 66 |
65
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ¬ +∞ ∈ 𝑢 ) |
| 67 |
66
|
pm2.21d |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ( +∞ ∈ 𝑢 → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 68 |
67
|
adantrd |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 69 |
56 68
|
sylbi |
⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 70 |
53 69
|
jaoi |
⊢ ( ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∨ 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 71 |
8 70
|
sylbi |
⊢ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 72 |
|
pnfnre |
⊢ +∞ ∉ ℝ |
| 73 |
72
|
neli |
⊢ ¬ +∞ ∈ ℝ |
| 74 |
|
elssuni |
⊢ ( 𝑢 ∈ ran (,) → 𝑢 ⊆ ∪ ran (,) ) |
| 75 |
|
unirnioo |
⊢ ℝ = ∪ ran (,) |
| 76 |
74 75
|
sseqtrrdi |
⊢ ( 𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ ) |
| 77 |
76
|
sseld |
⊢ ( 𝑢 ∈ ran (,) → ( +∞ ∈ 𝑢 → +∞ ∈ ℝ ) ) |
| 78 |
73 77
|
mtoi |
⊢ ( 𝑢 ∈ ran (,) → ¬ +∞ ∈ 𝑢 ) |
| 79 |
78
|
pm2.21d |
⊢ ( 𝑢 ∈ ran (,) → ( +∞ ∈ 𝑢 → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 80 |
79
|
adantrd |
⊢ ( 𝑢 ∈ ran (,) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 81 |
71 80
|
jaoi |
⊢ ( ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∨ 𝑢 ∈ ran (,) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 82 |
7 81
|
sylbi |
⊢ ( 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
| 83 |
82
|
rexlimiv |
⊢ ( ∃ 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
| 84 |
6 83
|
syl |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ∧ +∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
| 85 |
5 84
|
sylanb |
⊢ ( ( 𝐴 ∈ ( ordTop ‘ ≤ ) ∧ +∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |