Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) |
2 |
|
eqid |
⊢ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) |
3 |
|
eqid |
⊢ ran (,) = ran (,) |
4 |
1 2 3
|
leordtval |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) |
5 |
4
|
eleq2i |
⊢ ( 𝐴 ∈ ( ordTop ‘ ≤ ) ↔ 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ) |
6 |
|
tg2 |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ∧ +∞ ∈ 𝐴 ) → ∃ 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ) |
7 |
|
elun |
⊢ ( 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ↔ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∨ 𝑢 ∈ ran (,) ) ) |
8 |
|
elun |
⊢ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ↔ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∨ 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) |
9 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) |
10 |
9
|
elrnmpt |
⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) ) ) |
11 |
10
|
elv |
⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) ) |
12 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
13 |
12
|
a1i |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → -∞ ∈ ℝ* ) |
14 |
|
simprl |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑦 ∈ ℝ* ) |
15 |
|
0xr |
⊢ 0 ∈ ℝ* |
16 |
|
ifcl |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 0 ∈ ℝ* ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ) |
17 |
14 15 16
|
sylancl |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ) |
18 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
19 |
18
|
a1i |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → +∞ ∈ ℝ* ) |
20 |
|
xrmax1 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
21 |
15 14 20
|
sylancr |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
22 |
|
ge0gtmnf |
⊢ ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ∧ 0 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) → -∞ < if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
23 |
17 21 22
|
syl2anc |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → -∞ < if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
24 |
|
simpll |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → +∞ ∈ 𝑢 ) |
25 |
|
simprr |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑢 = ( 𝑦 (,] +∞ ) ) |
26 |
24 25
|
eleqtrd |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → +∞ ∈ ( 𝑦 (,] +∞ ) ) |
27 |
|
elioc1 |
⊢ ( ( 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( +∞ ∈ ( 𝑦 (,] +∞ ) ↔ ( +∞ ∈ ℝ* ∧ 𝑦 < +∞ ∧ +∞ ≤ +∞ ) ) ) |
28 |
14 18 27
|
sylancl |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( +∞ ∈ ( 𝑦 (,] +∞ ) ↔ ( +∞ ∈ ℝ* ∧ 𝑦 < +∞ ∧ +∞ ≤ +∞ ) ) ) |
29 |
26 28
|
mpbid |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( +∞ ∈ ℝ* ∧ 𝑦 < +∞ ∧ +∞ ≤ +∞ ) ) |
30 |
29
|
simp2d |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑦 < +∞ ) |
31 |
|
0ltpnf |
⊢ 0 < +∞ |
32 |
|
breq1 |
⊢ ( 𝑦 = if ( 0 ≤ 𝑦 , 𝑦 , 0 ) → ( 𝑦 < +∞ ↔ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) ) |
33 |
|
breq1 |
⊢ ( 0 = if ( 0 ≤ 𝑦 , 𝑦 , 0 ) → ( 0 < +∞ ↔ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) ) |
34 |
32 33
|
ifboth |
⊢ ( ( 𝑦 < +∞ ∧ 0 < +∞ ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) |
35 |
30 31 34
|
sylancl |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) |
36 |
|
xrre2 |
⊢ ( ( ( -∞ ∈ ℝ* ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < +∞ ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) |
37 |
13 17 19 23 35 36
|
syl32anc |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ) |
38 |
|
xrmax2 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
39 |
15 14 38
|
sylancr |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) |
40 |
|
df-ioc |
⊢ (,] = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 < 𝑐 ∧ 𝑐 ≤ 𝑏 ) } ) |
41 |
|
xrlelttr |
⊢ ( ( 𝑦 ∈ ℝ* ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∧ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) < 𝑥 ) → 𝑦 < 𝑥 ) ) |
42 |
40 40 41
|
ixxss1 |
⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑦 ≤ if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ) → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ ( 𝑦 (,] +∞ ) ) |
43 |
14 39 42
|
syl2anc |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ ( 𝑦 (,] +∞ ) ) |
44 |
|
simplr |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → 𝑢 ⊆ 𝐴 ) |
45 |
25 44
|
eqsstrrd |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( 𝑦 (,] +∞ ) ⊆ 𝐴 ) |
46 |
43 45
|
sstrd |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ 𝐴 ) |
47 |
|
oveq1 |
⊢ ( 𝑥 = if ( 0 ≤ 𝑦 , 𝑦 , 0 ) → ( 𝑥 (,] +∞ ) = ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ) |
48 |
47
|
sseq1d |
⊢ ( 𝑥 = if ( 0 ≤ 𝑦 , 𝑦 , 0 ) → ( ( 𝑥 (,] +∞ ) ⊆ 𝐴 ↔ ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ 𝐴 ) ) |
49 |
48
|
rspcev |
⊢ ( ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) ∈ ℝ ∧ ( if ( 0 ≤ 𝑦 , 𝑦 , 0 ) (,] +∞ ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
50 |
37 46 49
|
syl2anc |
⊢ ( ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( 𝑦 (,] +∞ ) ) ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
51 |
50
|
rexlimdvaa |
⊢ ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
52 |
51
|
com12 |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
53 |
11 52
|
sylbi |
⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
54 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) |
55 |
54
|
elrnmpt |
⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) ) ) |
56 |
55
|
elv |
⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) ) |
57 |
|
pnfnlt |
⊢ ( 𝑦 ∈ ℝ* → ¬ +∞ < 𝑦 ) |
58 |
|
elico1 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( +∞ ∈ ( -∞ [,) 𝑦 ) ↔ ( +∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦 ) ) ) |
59 |
12 58
|
mpan |
⊢ ( 𝑦 ∈ ℝ* → ( +∞ ∈ ( -∞ [,) 𝑦 ) ↔ ( +∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦 ) ) ) |
60 |
|
simp3 |
⊢ ( ( +∞ ∈ ℝ* ∧ -∞ ≤ +∞ ∧ +∞ < 𝑦 ) → +∞ < 𝑦 ) |
61 |
59 60
|
syl6bi |
⊢ ( 𝑦 ∈ ℝ* → ( +∞ ∈ ( -∞ [,) 𝑦 ) → +∞ < 𝑦 ) ) |
62 |
57 61
|
mtod |
⊢ ( 𝑦 ∈ ℝ* → ¬ +∞ ∈ ( -∞ [,) 𝑦 ) ) |
63 |
|
eleq2 |
⊢ ( 𝑢 = ( -∞ [,) 𝑦 ) → ( +∞ ∈ 𝑢 ↔ +∞ ∈ ( -∞ [,) 𝑦 ) ) ) |
64 |
63
|
notbid |
⊢ ( 𝑢 = ( -∞ [,) 𝑦 ) → ( ¬ +∞ ∈ 𝑢 ↔ ¬ +∞ ∈ ( -∞ [,) 𝑦 ) ) ) |
65 |
62 64
|
syl5ibrcom |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑢 = ( -∞ [,) 𝑦 ) → ¬ +∞ ∈ 𝑢 ) ) |
66 |
65
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ¬ +∞ ∈ 𝑢 ) |
67 |
66
|
pm2.21d |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ( +∞ ∈ 𝑢 → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
68 |
67
|
adantrd |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
69 |
56 68
|
sylbi |
⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
70 |
53 69
|
jaoi |
⊢ ( ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∨ 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
71 |
8 70
|
sylbi |
⊢ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
72 |
|
pnfnre |
⊢ +∞ ∉ ℝ |
73 |
72
|
neli |
⊢ ¬ +∞ ∈ ℝ |
74 |
|
elssuni |
⊢ ( 𝑢 ∈ ran (,) → 𝑢 ⊆ ∪ ran (,) ) |
75 |
|
unirnioo |
⊢ ℝ = ∪ ran (,) |
76 |
74 75
|
sseqtrrdi |
⊢ ( 𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ ) |
77 |
76
|
sseld |
⊢ ( 𝑢 ∈ ran (,) → ( +∞ ∈ 𝑢 → +∞ ∈ ℝ ) ) |
78 |
73 77
|
mtoi |
⊢ ( 𝑢 ∈ ran (,) → ¬ +∞ ∈ 𝑢 ) |
79 |
78
|
pm2.21d |
⊢ ( 𝑢 ∈ ran (,) → ( +∞ ∈ 𝑢 → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
80 |
79
|
adantrd |
⊢ ( 𝑢 ∈ ran (,) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
81 |
71 80
|
jaoi |
⊢ ( ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∨ 𝑢 ∈ ran (,) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
82 |
7 81
|
sylbi |
⊢ ( 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) → ( ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) ) |
83 |
82
|
rexlimiv |
⊢ ( ∃ 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ( +∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
84 |
6 83
|
syl |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ∧ +∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |
85 |
5 84
|
sylanb |
⊢ ( ( 𝐴 ∈ ( ordTop ‘ ≤ ) ∧ +∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( 𝑥 (,] +∞ ) ⊆ 𝐴 ) |