| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pnfnre |
⊢ +∞ ∉ ℝ |
| 2 |
1
|
neli |
⊢ ¬ +∞ ∈ ℝ |
| 3 |
2
|
intnanr |
⊢ ¬ ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) |
| 4 |
3
|
intnanr |
⊢ ¬ ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) |
| 5 |
|
pnfnemnf |
⊢ +∞ ≠ -∞ |
| 6 |
5
|
neii |
⊢ ¬ +∞ = -∞ |
| 7 |
6
|
intnanr |
⊢ ¬ ( +∞ = -∞ ∧ 𝐴 = +∞ ) |
| 8 |
4 7
|
pm3.2ni |
⊢ ¬ ( ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) ∨ ( +∞ = -∞ ∧ 𝐴 = +∞ ) ) |
| 9 |
2
|
intnanr |
⊢ ¬ ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) |
| 10 |
6
|
intnanr |
⊢ ¬ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) |
| 11 |
9 10
|
pm3.2ni |
⊢ ¬ ( ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) |
| 12 |
8 11
|
pm3.2ni |
⊢ ¬ ( ( ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) ∨ ( +∞ = -∞ ∧ 𝐴 = +∞ ) ) ∨ ( ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) |
| 13 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 14 |
|
ltxr |
⊢ ( ( +∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( +∞ < 𝐴 ↔ ( ( ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) ∨ ( +∞ = -∞ ∧ 𝐴 = +∞ ) ) ∨ ( ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) ) ) |
| 15 |
13 14
|
mpan |
⊢ ( 𝐴 ∈ ℝ* → ( +∞ < 𝐴 ↔ ( ( ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) ∨ ( +∞ = -∞ ∧ 𝐴 = +∞ ) ) ∨ ( ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) ) ) |
| 16 |
12 15
|
mtbiri |
⊢ ( 𝐴 ∈ ℝ* → ¬ +∞ < 𝐴 ) |