Step |
Hyp |
Ref |
Expression |
1 |
|
pnfnre |
⊢ +∞ ∉ ℝ |
2 |
1
|
neli |
⊢ ¬ +∞ ∈ ℝ |
3 |
2
|
intnanr |
⊢ ¬ ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) |
4 |
3
|
intnanr |
⊢ ¬ ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) |
5 |
|
pnfnemnf |
⊢ +∞ ≠ -∞ |
6 |
5
|
neii |
⊢ ¬ +∞ = -∞ |
7 |
6
|
intnanr |
⊢ ¬ ( +∞ = -∞ ∧ 𝐴 = +∞ ) |
8 |
4 7
|
pm3.2ni |
⊢ ¬ ( ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) ∨ ( +∞ = -∞ ∧ 𝐴 = +∞ ) ) |
9 |
2
|
intnanr |
⊢ ¬ ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) |
10 |
6
|
intnanr |
⊢ ¬ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) |
11 |
9 10
|
pm3.2ni |
⊢ ¬ ( ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) |
12 |
8 11
|
pm3.2ni |
⊢ ¬ ( ( ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) ∨ ( +∞ = -∞ ∧ 𝐴 = +∞ ) ) ∨ ( ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) |
13 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
14 |
|
ltxr |
⊢ ( ( +∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( +∞ < 𝐴 ↔ ( ( ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) ∨ ( +∞ = -∞ ∧ 𝐴 = +∞ ) ) ∨ ( ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) ) ) |
15 |
13 14
|
mpan |
⊢ ( 𝐴 ∈ ℝ* → ( +∞ < 𝐴 ↔ ( ( ( ( +∞ ∈ ℝ ∧ 𝐴 ∈ ℝ ) ∧ +∞ <ℝ 𝐴 ) ∨ ( +∞ = -∞ ∧ 𝐴 = +∞ ) ) ∨ ( ( +∞ ∈ ℝ ∧ 𝐴 = +∞ ) ∨ ( +∞ = -∞ ∧ 𝐴 ∈ ℝ ) ) ) ) ) |
16 |
12 15
|
mtbiri |
⊢ ( 𝐴 ∈ ℝ* → ¬ +∞ < 𝐴 ) |