Metamath Proof Explorer


Theorem pnfnre

Description: Plus infinity is not a real number. (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion pnfnre +∞ ∉ ℝ

Proof

Step Hyp Ref Expression
1 df-pnf +∞ = 𝒫
2 pwuninel ¬ 𝒫 ℂ ∈ ℂ
3 1 2 eqneltri ¬ +∞ ∈ ℂ
4 recn ( +∞ ∈ ℝ → +∞ ∈ ℂ )
5 3 4 mto ¬ +∞ ∈ ℝ
6 5 nelir +∞ ∉ ℝ