Metamath Proof Explorer


Theorem pnfxr

Description: Plus infinity belongs to the set of extended reals. (Contributed by NM, 13-Oct-2005) (Proof shortened by Anthony Hart, 29-Aug-2011)

Ref Expression
Assertion pnfxr +∞ ∈ ℝ*

Proof

Step Hyp Ref Expression
1 ssun2 { +∞ , -∞ } ⊆ ( ℝ ∪ { +∞ , -∞ } )
2 pnfex +∞ ∈ V
3 2 prid1 +∞ ∈ { +∞ , -∞ }
4 1 3 sselii +∞ ∈ ( ℝ ∪ { +∞ , -∞ } )
5 df-xr * = ( ℝ ∪ { +∞ , -∞ } )
6 4 5 eleqtrri +∞ ∈ ℝ*