| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ispnrm |
⊢ ( 𝐽 ∈ PNrm ↔ ( 𝐽 ∈ Nrm ∧ ( Clsd ‘ 𝐽 ) ⊆ ran ( 𝑓 ∈ ( 𝐽 ↑m ℕ ) ↦ ∩ ran 𝑓 ) ) ) |
| 2 |
1
|
simprbi |
⊢ ( 𝐽 ∈ PNrm → ( Clsd ‘ 𝐽 ) ⊆ ran ( 𝑓 ∈ ( 𝐽 ↑m ℕ ) ↦ ∩ ran 𝑓 ) ) |
| 3 |
2
|
sselda |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → 𝐴 ∈ ran ( 𝑓 ∈ ( 𝐽 ↑m ℕ ) ↦ ∩ ran 𝑓 ) ) |
| 4 |
|
eqid |
⊢ ( 𝑓 ∈ ( 𝐽 ↑m ℕ ) ↦ ∩ ran 𝑓 ) = ( 𝑓 ∈ ( 𝐽 ↑m ℕ ) ↦ ∩ ran 𝑓 ) |
| 5 |
4
|
elrnmpt |
⊢ ( 𝐴 ∈ ( Clsd ‘ 𝐽 ) → ( 𝐴 ∈ ran ( 𝑓 ∈ ( 𝐽 ↑m ℕ ) ↦ ∩ ran 𝑓 ) ↔ ∃ 𝑓 ∈ ( 𝐽 ↑m ℕ ) 𝐴 = ∩ ran 𝑓 ) ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝐴 ∈ ran ( 𝑓 ∈ ( 𝐽 ↑m ℕ ) ↦ ∩ ran 𝑓 ) ↔ ∃ 𝑓 ∈ ( 𝐽 ↑m ℕ ) 𝐴 = ∩ ran 𝑓 ) ) |
| 7 |
3 6
|
mpbid |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ ( Clsd ‘ 𝐽 ) ) → ∃ 𝑓 ∈ ( 𝐽 ↑m ℕ ) 𝐴 = ∩ ran 𝑓 ) |