Step |
Hyp |
Ref |
Expression |
1 |
|
pnrmtop |
⊢ ( 𝐽 ∈ PNrm → 𝐽 ∈ Top ) |
2 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
3 |
2
|
opncld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
4 |
1 3
|
sylan |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) → ( ∪ 𝐽 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) |
5 |
|
pnrmcld |
⊢ ( ( 𝐽 ∈ PNrm ∧ ( ∪ 𝐽 ∖ 𝐴 ) ∈ ( Clsd ‘ 𝐽 ) ) → ∃ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) |
6 |
4 5
|
syldan |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) → ∃ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) |
7 |
1
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) ∧ 𝑥 ∈ ℕ ) → 𝐽 ∈ Top ) |
8 |
|
elmapi |
⊢ ( 𝑔 ∈ ( 𝐽 ↑m ℕ ) → 𝑔 : ℕ ⟶ 𝐽 ) |
9 |
8
|
adantl |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → 𝑔 : ℕ ⟶ 𝐽 ) |
10 |
9
|
ffvelrnda |
⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐽 ) |
11 |
2
|
opncld |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐽 ) → ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
12 |
7 10 11
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) ∧ 𝑥 ∈ ℕ ) → ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ∈ ( Clsd ‘ 𝐽 ) ) |
13 |
12
|
fmpttd |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
14 |
|
fvex |
⊢ ( Clsd ‘ 𝐽 ) ∈ V |
15 |
|
nnex |
⊢ ℕ ∈ V |
16 |
14 15
|
elmap |
⊢ ( ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ↔ ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) : ℕ ⟶ ( Clsd ‘ 𝐽 ) ) |
17 |
13 16
|
sylibr |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ) |
18 |
|
iundif2 |
⊢ ∪ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) = ( ∪ 𝐽 ∖ ∩ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) ) |
19 |
|
ffn |
⊢ ( 𝑔 : ℕ ⟶ 𝐽 → 𝑔 Fn ℕ ) |
20 |
|
fniinfv |
⊢ ( 𝑔 Fn ℕ → ∩ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) = ∩ ran 𝑔 ) |
21 |
9 19 20
|
3syl |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ∩ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) = ∩ ran 𝑔 ) |
22 |
21
|
difeq2d |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ( ∪ 𝐽 ∖ ∩ 𝑥 ∈ ℕ ( 𝑔 ‘ 𝑥 ) ) = ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) ) |
23 |
18 22
|
syl5eq |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ∪ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) = ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) ) |
24 |
|
uniexg |
⊢ ( 𝐽 ∈ PNrm → ∪ 𝐽 ∈ V ) |
25 |
24
|
difexd |
⊢ ( 𝐽 ∈ PNrm → ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ∈ V ) |
26 |
25
|
ralrimivw |
⊢ ( 𝐽 ∈ PNrm → ∀ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ∈ V ) |
27 |
26
|
adantr |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ∀ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ∈ V ) |
28 |
|
dfiun2g |
⊢ ( ∀ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ∈ V → ∪ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ ℕ 𝑓 = ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) } ) |
29 |
27 28
|
syl |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ∪ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ ℕ 𝑓 = ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) } ) |
30 |
|
eqid |
⊢ ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) |
31 |
30
|
rnmpt |
⊢ ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) = { 𝑓 ∣ ∃ 𝑥 ∈ ℕ 𝑓 = ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) } |
32 |
31
|
unieqi |
⊢ ∪ ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ ℕ 𝑓 = ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) } |
33 |
29 32
|
eqtr4di |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ∪ 𝑥 ∈ ℕ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) = ∪ ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ) |
34 |
23 33
|
eqtr3d |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ) |
35 |
|
rneq |
⊢ ( 𝑓 = ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) → ran 𝑓 = ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ) |
36 |
35
|
unieqd |
⊢ ( 𝑓 = ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) → ∪ ran 𝑓 = ∪ ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ) |
37 |
36
|
rspceeqv |
⊢ ( ( ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ∧ ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran ( 𝑥 ∈ ℕ ↦ ( ∪ 𝐽 ∖ ( 𝑔 ‘ 𝑥 ) ) ) ) → ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran 𝑓 ) |
38 |
17 34 37
|
syl2anc |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝑔 ∈ ( 𝐽 ↑m ℕ ) ) → ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran 𝑓 ) |
39 |
38
|
ad2ant2r |
⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑔 ∈ ( 𝐽 ↑m ℕ ) ∧ ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) ) → ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran 𝑓 ) |
40 |
|
difeq2 |
⊢ ( ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐴 ) ) = ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) ) |
41 |
40
|
eqcomd |
⊢ ( ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 → ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐴 ) ) ) |
42 |
|
elssuni |
⊢ ( 𝐴 ∈ 𝐽 → 𝐴 ⊆ ∪ 𝐽 ) |
43 |
|
dfss4 |
⊢ ( 𝐴 ⊆ ∪ 𝐽 ↔ ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐴 ) ) = 𝐴 ) |
44 |
42 43
|
sylib |
⊢ ( 𝐴 ∈ 𝐽 → ( ∪ 𝐽 ∖ ( ∪ 𝐽 ∖ 𝐴 ) ) = 𝐴 ) |
45 |
41 44
|
sylan9eqr |
⊢ ( ( 𝐴 ∈ 𝐽 ∧ ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) → ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = 𝐴 ) |
46 |
45
|
ad2ant2l |
⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑔 ∈ ( 𝐽 ↑m ℕ ) ∧ ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) ) → ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = 𝐴 ) |
47 |
46
|
eqeq1d |
⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑔 ∈ ( 𝐽 ↑m ℕ ) ∧ ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) ) → ( ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran 𝑓 ↔ 𝐴 = ∪ ran 𝑓 ) ) |
48 |
47
|
rexbidv |
⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑔 ∈ ( 𝐽 ↑m ℕ ) ∧ ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) ) → ( ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) ( ∪ 𝐽 ∖ ∩ ran 𝑔 ) = ∪ ran 𝑓 ↔ ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) 𝐴 = ∪ ran 𝑓 ) ) |
49 |
39 48
|
mpbid |
⊢ ( ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) ∧ ( 𝑔 ∈ ( 𝐽 ↑m ℕ ) ∧ ( ∪ 𝐽 ∖ 𝐴 ) = ∩ ran 𝑔 ) ) → ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) 𝐴 = ∪ ran 𝑓 ) |
50 |
6 49
|
rexlimddv |
⊢ ( ( 𝐽 ∈ PNrm ∧ 𝐴 ∈ 𝐽 ) → ∃ 𝑓 ∈ ( ( Clsd ‘ 𝐽 ) ↑m ℕ ) 𝐴 = ∪ ran 𝑓 ) |