Metamath Proof Explorer


Theorem pnrmtop

Description: A perfectly normal space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion pnrmtop ( 𝐽 ∈ PNrm → 𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 pnrmnrm ( 𝐽 ∈ PNrm → 𝐽 ∈ Nrm )
2 nrmtop ( 𝐽 ∈ Nrm → 𝐽 ∈ Top )
3 1 2 syl ( 𝐽 ∈ PNrm → 𝐽 ∈ Top )