| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 2 |
|
1lt2 |
⊢ 1 < 2 |
| 3 |
|
df-ioo |
⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 4 |
|
df-ico |
⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) |
| 5 |
|
xrltletr |
⊢ ( ( 1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( 1 < 2 ∧ 2 ≤ 𝑤 ) → 1 < 𝑤 ) ) |
| 6 |
3 4 5
|
ixxss1 |
⊢ ( ( 1 ∈ ℝ* ∧ 1 < 2 ) → ( 2 [,) +∞ ) ⊆ ( 1 (,) +∞ ) ) |
| 7 |
1 2 6
|
mp2an |
⊢ ( 2 [,) +∞ ) ⊆ ( 1 (,) +∞ ) |
| 8 |
|
resmpt |
⊢ ( ( 2 [,) +∞ ) ⊆ ( 1 (,) +∞ ) → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) ↾ ( 2 [,) +∞ ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) ) |
| 9 |
7 8
|
mp1i |
⊢ ( ⊤ → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) ↾ ( 2 [,) +∞ ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) ) |
| 10 |
7
|
sseli |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ( 1 (,) +∞ ) ) |
| 11 |
|
ioossre |
⊢ ( 1 (,) +∞ ) ⊆ ℝ |
| 12 |
11
|
sseli |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ ) |
| 13 |
10 12
|
syl |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℝ ) |
| 14 |
|
2re |
⊢ 2 ∈ ℝ |
| 15 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 16 |
|
elico2 |
⊢ ( ( 2 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝑥 ∈ ( 2 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) ) |
| 17 |
14 15 16
|
mp2an |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ∧ 𝑥 < +∞ ) ) |
| 18 |
17
|
simp2bi |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 2 ≤ 𝑥 ) |
| 19 |
|
chtrpcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) → ( θ ‘ 𝑥 ) ∈ ℝ+ ) |
| 20 |
13 18 19
|
syl2anc |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( θ ‘ 𝑥 ) ∈ ℝ+ ) |
| 21 |
|
0red |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 0 ∈ ℝ ) |
| 22 |
|
1red |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 1 ∈ ℝ ) |
| 23 |
|
0lt1 |
⊢ 0 < 1 |
| 24 |
23
|
a1i |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 0 < 1 ) |
| 25 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 26 |
25
|
simpld |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 1 < 𝑥 ) |
| 27 |
21 22 12 24 26
|
lttrd |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 0 < 𝑥 ) |
| 28 |
12 27
|
elrpd |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ+ ) |
| 29 |
10 28
|
syl |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℝ+ ) |
| 30 |
20 29
|
rpdivcld |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( θ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ+ ) |
| 31 |
30
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( θ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ+ ) |
| 32 |
|
ppinncl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) → ( π ‘ 𝑥 ) ∈ ℕ ) |
| 33 |
13 18 32
|
syl2anc |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( π ‘ 𝑥 ) ∈ ℕ ) |
| 34 |
33
|
nnrpd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( π ‘ 𝑥 ) ∈ ℝ+ ) |
| 35 |
12 26
|
rplogcld |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
| 36 |
10 35
|
syl |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
| 37 |
34 36
|
rpmulcld |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℝ+ ) |
| 38 |
20 37
|
rpdivcld |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ∈ ℝ+ ) |
| 39 |
38
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ∈ ℝ+ ) |
| 40 |
29
|
ssriv |
⊢ ( 2 [,) +∞ ) ⊆ ℝ+ |
| 41 |
|
resmpt |
⊢ ( ( 2 [,) +∞ ) ⊆ ℝ+ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ) |
| 42 |
40 41
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) |
| 43 |
|
pnt2 |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ⇝𝑟 1 |
| 44 |
|
rlimres |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ⇝𝑟 1 → ( ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) ⇝𝑟 1 ) |
| 45 |
43 44
|
mp1i |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) ⇝𝑟 1 ) |
| 46 |
42 45
|
eqbrtrrid |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ⇝𝑟 1 ) |
| 47 |
|
chtppilim |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ⇝𝑟 1 |
| 48 |
47
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ⇝𝑟 1 ) |
| 49 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 50 |
49
|
a1i |
⊢ ( ⊤ → 1 ≠ 0 ) |
| 51 |
38
|
rpne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ≠ 0 ) |
| 52 |
51
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ≠ 0 ) |
| 53 |
31 39 46 48 50 52
|
rlimdiv |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( θ ‘ 𝑥 ) / 𝑥 ) / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) ⇝𝑟 ( 1 / 1 ) ) |
| 54 |
13
|
recnd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℂ ) |
| 55 |
|
chtcl |
⊢ ( 𝑥 ∈ ℝ → ( θ ‘ 𝑥 ) ∈ ℝ ) |
| 56 |
12 55
|
syl |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( θ ‘ 𝑥 ) ∈ ℝ ) |
| 57 |
56
|
recnd |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( θ ‘ 𝑥 ) ∈ ℂ ) |
| 58 |
10 57
|
syl |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( θ ‘ 𝑥 ) ∈ ℂ ) |
| 59 |
54 58
|
mulcomd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( 𝑥 · ( θ ‘ 𝑥 ) ) = ( ( θ ‘ 𝑥 ) · 𝑥 ) ) |
| 60 |
59
|
oveq2d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ( θ ‘ 𝑥 ) · ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / ( 𝑥 · ( θ ‘ 𝑥 ) ) ) = ( ( ( θ ‘ 𝑥 ) · ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / ( ( θ ‘ 𝑥 ) · 𝑥 ) ) ) |
| 61 |
37
|
rpcnd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 62 |
29
|
rpne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ≠ 0 ) |
| 63 |
20
|
rpne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( θ ‘ 𝑥 ) ≠ 0 ) |
| 64 |
61 54 58 62 63
|
divcan5d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ( θ ‘ 𝑥 ) · ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / ( ( θ ‘ 𝑥 ) · 𝑥 ) ) = ( ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / 𝑥 ) ) |
| 65 |
60 64
|
eqtrd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ( θ ‘ 𝑥 ) · ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / ( 𝑥 · ( θ ‘ 𝑥 ) ) ) = ( ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / 𝑥 ) ) |
| 66 |
37
|
rpne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ≠ 0 ) |
| 67 |
58 54 58 61 62 66 63
|
divdivdivd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ( θ ‘ 𝑥 ) / 𝑥 ) / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) = ( ( ( θ ‘ 𝑥 ) · ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) / ( 𝑥 · ( θ ‘ 𝑥 ) ) ) ) |
| 68 |
33
|
nncnd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( π ‘ 𝑥 ) ∈ ℂ ) |
| 69 |
36
|
rpcnd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 70 |
36
|
rpne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( log ‘ 𝑥 ) ≠ 0 ) |
| 71 |
68 54 69 62 70
|
divdiv2d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) = ( ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) / 𝑥 ) ) |
| 72 |
65 67 71
|
3eqtr4d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ( θ ‘ 𝑥 ) / 𝑥 ) / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) = ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) |
| 73 |
72
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( θ ‘ 𝑥 ) / 𝑥 ) / ( ( θ ‘ 𝑥 ) / ( ( π ‘ 𝑥 ) · ( log ‘ 𝑥 ) ) ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) |
| 74 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 75 |
53 73 74
|
3brtr3g |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) ⇝𝑟 1 ) |
| 76 |
9 75
|
eqbrtrd |
⊢ ( ⊤ → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) ↾ ( 2 [,) +∞ ) ) ⇝𝑟 1 ) |
| 77 |
|
ppicl |
⊢ ( 𝑥 ∈ ℝ → ( π ‘ 𝑥 ) ∈ ℕ0 ) |
| 78 |
12 77
|
syl |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( π ‘ 𝑥 ) ∈ ℕ0 ) |
| 79 |
78
|
nn0red |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( π ‘ 𝑥 ) ∈ ℝ ) |
| 80 |
28 35
|
rpdivcld |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 𝑥 / ( log ‘ 𝑥 ) ) ∈ ℝ+ ) |
| 81 |
79 80
|
rerpdivcld |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 82 |
81
|
recnd |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 83 |
82
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ∈ ℂ ) |
| 84 |
83
|
fmpttd |
⊢ ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) : ( 1 (,) +∞ ) ⟶ ℂ ) |
| 85 |
11
|
a1i |
⊢ ( ⊤ → ( 1 (,) +∞ ) ⊆ ℝ ) |
| 86 |
14
|
a1i |
⊢ ( ⊤ → 2 ∈ ℝ ) |
| 87 |
84 85 86
|
rlimresb |
⊢ ( ⊤ → ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) ⇝𝑟 1 ↔ ( ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) ↾ ( 2 [,) +∞ ) ) ⇝𝑟 1 ) ) |
| 88 |
76 87
|
mpbird |
⊢ ( ⊤ → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) ⇝𝑟 1 ) |
| 89 |
88
|
mptru |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( π ‘ 𝑥 ) / ( 𝑥 / ( log ‘ 𝑥 ) ) ) ) ⇝𝑟 1 |