Step |
Hyp |
Ref |
Expression |
1 |
|
2re |
⊢ 2 ∈ ℝ |
2 |
|
elicopnf |
⊢ ( 2 ∈ ℝ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) ) |
4 |
|
chprpcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) → ( ψ ‘ 𝑥 ) ∈ ℝ+ ) |
5 |
3 4
|
sylbi |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ψ ‘ 𝑥 ) ∈ ℝ+ ) |
6 |
3
|
simplbi |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℝ ) |
7 |
|
0red |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 0 ∈ ℝ ) |
8 |
1
|
a1i |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 2 ∈ ℝ ) |
9 |
|
2pos |
⊢ 0 < 2 |
10 |
9
|
a1i |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 0 < 2 ) |
11 |
3
|
simprbi |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 2 ≤ 𝑥 ) |
12 |
7 8 6 10 11
|
ltletrd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 0 < 𝑥 ) |
13 |
6 12
|
elrpd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℝ+ ) |
14 |
5 13
|
rpdivcld |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ+ ) |
15 |
14
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ+ ) |
16 |
|
chtrpcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 2 ≤ 𝑥 ) → ( θ ‘ 𝑥 ) ∈ ℝ+ ) |
17 |
3 16
|
sylbi |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( θ ‘ 𝑥 ) ∈ ℝ+ ) |
18 |
5 17
|
rpdivcld |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ∈ ℝ+ ) |
19 |
18
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ∈ ℝ+ ) |
20 |
13
|
ssriv |
⊢ ( 2 [,) +∞ ) ⊆ ℝ+ |
21 |
20
|
a1i |
⊢ ( ⊤ → ( 2 [,) +∞ ) ⊆ ℝ+ ) |
22 |
|
pnt3 |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ⇝𝑟 1 |
23 |
22
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ⇝𝑟 1 ) |
24 |
21 23
|
rlimres2 |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ⇝𝑟 1 ) |
25 |
|
chpchtlim |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ⇝𝑟 1 |
26 |
25
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ⇝𝑟 1 ) |
27 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
28 |
27
|
a1i |
⊢ ( ⊤ → 1 ≠ 0 ) |
29 |
19
|
rpne0d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 2 [,) +∞ ) ) → ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ≠ 0 ) |
30 |
15 19 24 26 28 29
|
rlimdiv |
⊢ ( ⊤ → ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) / ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ) ⇝𝑟 ( 1 / 1 ) ) |
31 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
32 |
|
chpcl |
⊢ ( 𝑥 ∈ ℝ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
33 |
31 32
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
34 |
33
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( ψ ‘ 𝑥 ) ∈ ℂ ) |
35 |
13 34
|
syl |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ψ ‘ 𝑥 ) ∈ ℂ ) |
36 |
13
|
rpcnne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
37 |
5
|
rpcnne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ψ ‘ 𝑥 ) ∈ ℂ ∧ ( ψ ‘ 𝑥 ) ≠ 0 ) ) |
38 |
17
|
rpcnne0d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( θ ‘ 𝑥 ) ∈ ℂ ∧ ( θ ‘ 𝑥 ) ≠ 0 ) ) |
39 |
|
divdivdiv |
⊢ ( ( ( ( ψ ‘ 𝑥 ) ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) ∧ ( ( ( ψ ‘ 𝑥 ) ∈ ℂ ∧ ( ψ ‘ 𝑥 ) ≠ 0 ) ∧ ( ( θ ‘ 𝑥 ) ∈ ℂ ∧ ( θ ‘ 𝑥 ) ≠ 0 ) ) ) → ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) / ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) = ( ( ( ψ ‘ 𝑥 ) · ( θ ‘ 𝑥 ) ) / ( 𝑥 · ( ψ ‘ 𝑥 ) ) ) ) |
40 |
35 36 37 38 39
|
syl22anc |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) / ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) = ( ( ( ψ ‘ 𝑥 ) · ( θ ‘ 𝑥 ) ) / ( 𝑥 · ( ψ ‘ 𝑥 ) ) ) ) |
41 |
6
|
recnd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → 𝑥 ∈ ℂ ) |
42 |
41 35
|
mulcomd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( 𝑥 · ( ψ ‘ 𝑥 ) ) = ( ( ψ ‘ 𝑥 ) · 𝑥 ) ) |
43 |
42
|
oveq2d |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ( ψ ‘ 𝑥 ) · ( θ ‘ 𝑥 ) ) / ( 𝑥 · ( ψ ‘ 𝑥 ) ) ) = ( ( ( ψ ‘ 𝑥 ) · ( θ ‘ 𝑥 ) ) / ( ( ψ ‘ 𝑥 ) · 𝑥 ) ) ) |
44 |
|
chtcl |
⊢ ( 𝑥 ∈ ℝ → ( θ ‘ 𝑥 ) ∈ ℝ ) |
45 |
31 44
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( θ ‘ 𝑥 ) ∈ ℝ ) |
46 |
45
|
recnd |
⊢ ( 𝑥 ∈ ℝ+ → ( θ ‘ 𝑥 ) ∈ ℂ ) |
47 |
13 46
|
syl |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( θ ‘ 𝑥 ) ∈ ℂ ) |
48 |
|
divcan5 |
⊢ ( ( ( θ ‘ 𝑥 ) ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( ( ψ ‘ 𝑥 ) ∈ ℂ ∧ ( ψ ‘ 𝑥 ) ≠ 0 ) ) → ( ( ( ψ ‘ 𝑥 ) · ( θ ‘ 𝑥 ) ) / ( ( ψ ‘ 𝑥 ) · 𝑥 ) ) = ( ( θ ‘ 𝑥 ) / 𝑥 ) ) |
49 |
47 36 37 48
|
syl3anc |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ( ψ ‘ 𝑥 ) · ( θ ‘ 𝑥 ) ) / ( ( ψ ‘ 𝑥 ) · 𝑥 ) ) = ( ( θ ‘ 𝑥 ) / 𝑥 ) ) |
50 |
40 43 49
|
3eqtrd |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) → ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) / ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) = ( ( θ ‘ 𝑥 ) / 𝑥 ) ) |
51 |
50
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) / ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) |
52 |
|
resmpt |
⊢ ( ( 2 [,) +∞ ) ⊆ ℝ+ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ) |
53 |
20 52
|
ax-mp |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) = ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) |
54 |
51 53
|
eqtr4i |
⊢ ( 𝑥 ∈ ( 2 [,) +∞ ) ↦ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) / ( ( ψ ‘ 𝑥 ) / ( θ ‘ 𝑥 ) ) ) ) = ( ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) |
55 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
56 |
30 54 55
|
3brtr3g |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) ⇝𝑟 1 ) |
57 |
|
rerpdivcl |
⊢ ( ( ( θ ‘ 𝑥 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( θ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
58 |
45 57
|
mpancom |
⊢ ( 𝑥 ∈ ℝ+ → ( ( θ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
59 |
58
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( θ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
60 |
59
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( θ ‘ 𝑥 ) / 𝑥 ) ∈ ℂ ) |
61 |
60
|
fmpttd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) : ℝ+ ⟶ ℂ ) |
62 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
63 |
62
|
a1i |
⊢ ( ⊤ → ℝ+ ⊆ ℝ ) |
64 |
1
|
a1i |
⊢ ( ⊤ → 2 ∈ ℝ ) |
65 |
61 63 64
|
rlimresb |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ⇝𝑟 1 ↔ ( ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ↾ ( 2 [,) +∞ ) ) ⇝𝑟 1 ) ) |
66 |
56 65
|
mpbird |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ⇝𝑟 1 ) |
67 |
66
|
mptru |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( θ ‘ 𝑥 ) / 𝑥 ) ) ⇝𝑟 1 |