| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntlem1.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
| 2 |
|
pntlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 3 |
|
pntlem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 4 |
|
pntlem1.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 (,) 1 ) ) |
| 5 |
|
pntlem1.d |
⊢ 𝐷 = ( 𝐴 + 1 ) |
| 6 |
|
pntlem1.f |
⊢ 𝐹 = ( ( 1 − ( 1 / 𝐷 ) ) · ( ( 𝐿 / ( ; 3 2 · 𝐵 ) ) / ( 𝐷 ↑ 2 ) ) ) |
| 7 |
|
pntlem1.u |
⊢ ( 𝜑 → 𝑈 ∈ ℝ+ ) |
| 8 |
|
pntlem1.u2 |
⊢ ( 𝜑 → 𝑈 ≤ 𝐴 ) |
| 9 |
|
pntlem1.e |
⊢ 𝐸 = ( 𝑈 / 𝐷 ) |
| 10 |
|
pntlem1.k |
⊢ 𝐾 = ( exp ‘ ( 𝐵 / 𝐸 ) ) |
| 11 |
1 2 3 4 5 6
|
pntlemd |
⊢ ( 𝜑 → ( 𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+ ) ) |
| 12 |
11
|
simp2d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
| 13 |
7 12
|
rpdivcld |
⊢ ( 𝜑 → ( 𝑈 / 𝐷 ) ∈ ℝ+ ) |
| 14 |
9 13
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 15 |
3 14
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐵 / 𝐸 ) ∈ ℝ+ ) |
| 16 |
15
|
rpred |
⊢ ( 𝜑 → ( 𝐵 / 𝐸 ) ∈ ℝ ) |
| 17 |
16
|
rpefcld |
⊢ ( 𝜑 → ( exp ‘ ( 𝐵 / 𝐸 ) ) ∈ ℝ+ ) |
| 18 |
10 17
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ℝ+ ) |
| 19 |
14
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 20 |
14
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐸 ) |
| 21 |
7
|
rpred |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
| 22 |
2
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 23 |
12
|
rpred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
| 24 |
22
|
ltp1d |
⊢ ( 𝜑 → 𝐴 < ( 𝐴 + 1 ) ) |
| 25 |
24 5
|
breqtrrdi |
⊢ ( 𝜑 → 𝐴 < 𝐷 ) |
| 26 |
21 22 23 8 25
|
lelttrd |
⊢ ( 𝜑 → 𝑈 < 𝐷 ) |
| 27 |
12
|
rpcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
| 28 |
27
|
mulridd |
⊢ ( 𝜑 → ( 𝐷 · 1 ) = 𝐷 ) |
| 29 |
26 28
|
breqtrrd |
⊢ ( 𝜑 → 𝑈 < ( 𝐷 · 1 ) ) |
| 30 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 31 |
21 30 12
|
ltdivmuld |
⊢ ( 𝜑 → ( ( 𝑈 / 𝐷 ) < 1 ↔ 𝑈 < ( 𝐷 · 1 ) ) ) |
| 32 |
29 31
|
mpbird |
⊢ ( 𝜑 → ( 𝑈 / 𝐷 ) < 1 ) |
| 33 |
9 32
|
eqbrtrid |
⊢ ( 𝜑 → 𝐸 < 1 ) |
| 34 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 35 |
|
1xr |
⊢ 1 ∈ ℝ* |
| 36 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( 𝐸 ∈ ( 0 (,) 1 ) ↔ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1 ) ) ) |
| 37 |
34 35 36
|
mp2an |
⊢ ( 𝐸 ∈ ( 0 (,) 1 ) ↔ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1 ) ) |
| 38 |
19 20 33 37
|
syl3anbrc |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 (,) 1 ) ) |
| 39 |
|
efgt1 |
⊢ ( ( 𝐵 / 𝐸 ) ∈ ℝ+ → 1 < ( exp ‘ ( 𝐵 / 𝐸 ) ) ) |
| 40 |
15 39
|
syl |
⊢ ( 𝜑 → 1 < ( exp ‘ ( 𝐵 / 𝐸 ) ) ) |
| 41 |
40 10
|
breqtrrdi |
⊢ ( 𝜑 → 1 < 𝐾 ) |
| 42 |
|
1re |
⊢ 1 ∈ ℝ |
| 43 |
|
ltaddrp |
⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 1 < ( 1 + 𝐴 ) ) |
| 44 |
42 2 43
|
sylancr |
⊢ ( 𝜑 → 1 < ( 1 + 𝐴 ) ) |
| 45 |
7
|
rpcnne0d |
⊢ ( 𝜑 → ( 𝑈 ∈ ℂ ∧ 𝑈 ≠ 0 ) ) |
| 46 |
|
divid |
⊢ ( ( 𝑈 ∈ ℂ ∧ 𝑈 ≠ 0 ) → ( 𝑈 / 𝑈 ) = 1 ) |
| 47 |
45 46
|
syl |
⊢ ( 𝜑 → ( 𝑈 / 𝑈 ) = 1 ) |
| 48 |
2
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 49 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 50 |
|
addcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |
| 51 |
48 49 50
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |
| 52 |
5 51
|
eqtrid |
⊢ ( 𝜑 → 𝐷 = ( 1 + 𝐴 ) ) |
| 53 |
44 47 52
|
3brtr4d |
⊢ ( 𝜑 → ( 𝑈 / 𝑈 ) < 𝐷 ) |
| 54 |
21 7 12 53
|
ltdiv23d |
⊢ ( 𝜑 → ( 𝑈 / 𝐷 ) < 𝑈 ) |
| 55 |
9 54
|
eqbrtrid |
⊢ ( 𝜑 → 𝐸 < 𝑈 ) |
| 56 |
|
difrp |
⊢ ( ( 𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( 𝐸 < 𝑈 ↔ ( 𝑈 − 𝐸 ) ∈ ℝ+ ) ) |
| 57 |
19 21 56
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 < 𝑈 ↔ ( 𝑈 − 𝐸 ) ∈ ℝ+ ) ) |
| 58 |
55 57
|
mpbid |
⊢ ( 𝜑 → ( 𝑈 − 𝐸 ) ∈ ℝ+ ) |
| 59 |
38 41 58
|
3jca |
⊢ ( 𝜑 → ( 𝐸 ∈ ( 0 (,) 1 ) ∧ 1 < 𝐾 ∧ ( 𝑈 − 𝐸 ) ∈ ℝ+ ) ) |
| 60 |
14 18 59
|
3jca |
⊢ ( 𝜑 → ( 𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ ( 𝐸 ∈ ( 0 (,) 1 ) ∧ 1 < 𝐾 ∧ ( 𝑈 − 𝐸 ) ∈ ℝ+ ) ) ) |