Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
2 |
|
pntlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
3 |
|
pntlem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
4 |
|
pntlem1.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 (,) 1 ) ) |
5 |
|
pntlem1.d |
⊢ 𝐷 = ( 𝐴 + 1 ) |
6 |
|
pntlem1.f |
⊢ 𝐹 = ( ( 1 − ( 1 / 𝐷 ) ) · ( ( 𝐿 / ( ; 3 2 · 𝐵 ) ) / ( 𝐷 ↑ 2 ) ) ) |
7 |
|
pntlem1.u |
⊢ ( 𝜑 → 𝑈 ∈ ℝ+ ) |
8 |
|
pntlem1.u2 |
⊢ ( 𝜑 → 𝑈 ≤ 𝐴 ) |
9 |
|
pntlem1.e |
⊢ 𝐸 = ( 𝑈 / 𝐷 ) |
10 |
|
pntlem1.k |
⊢ 𝐾 = ( exp ‘ ( 𝐵 / 𝐸 ) ) |
11 |
1 2 3 4 5 6
|
pntlemd |
⊢ ( 𝜑 → ( 𝐿 ∈ ℝ+ ∧ 𝐷 ∈ ℝ+ ∧ 𝐹 ∈ ℝ+ ) ) |
12 |
11
|
simp2d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ+ ) |
13 |
7 12
|
rpdivcld |
⊢ ( 𝜑 → ( 𝑈 / 𝐷 ) ∈ ℝ+ ) |
14 |
9 13
|
eqeltrid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
15 |
3 14
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐵 / 𝐸 ) ∈ ℝ+ ) |
16 |
15
|
rpred |
⊢ ( 𝜑 → ( 𝐵 / 𝐸 ) ∈ ℝ ) |
17 |
16
|
rpefcld |
⊢ ( 𝜑 → ( exp ‘ ( 𝐵 / 𝐸 ) ) ∈ ℝ+ ) |
18 |
10 17
|
eqeltrid |
⊢ ( 𝜑 → 𝐾 ∈ ℝ+ ) |
19 |
14
|
rpred |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
20 |
14
|
rpgt0d |
⊢ ( 𝜑 → 0 < 𝐸 ) |
21 |
7
|
rpred |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
22 |
2
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
23 |
12
|
rpred |
⊢ ( 𝜑 → 𝐷 ∈ ℝ ) |
24 |
22
|
ltp1d |
⊢ ( 𝜑 → 𝐴 < ( 𝐴 + 1 ) ) |
25 |
24 5
|
breqtrrdi |
⊢ ( 𝜑 → 𝐴 < 𝐷 ) |
26 |
21 22 23 8 25
|
lelttrd |
⊢ ( 𝜑 → 𝑈 < 𝐷 ) |
27 |
12
|
rpcnd |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
28 |
27
|
mulid1d |
⊢ ( 𝜑 → ( 𝐷 · 1 ) = 𝐷 ) |
29 |
26 28
|
breqtrrd |
⊢ ( 𝜑 → 𝑈 < ( 𝐷 · 1 ) ) |
30 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
31 |
21 30 12
|
ltdivmuld |
⊢ ( 𝜑 → ( ( 𝑈 / 𝐷 ) < 1 ↔ 𝑈 < ( 𝐷 · 1 ) ) ) |
32 |
29 31
|
mpbird |
⊢ ( 𝜑 → ( 𝑈 / 𝐷 ) < 1 ) |
33 |
9 32
|
eqbrtrid |
⊢ ( 𝜑 → 𝐸 < 1 ) |
34 |
|
0xr |
⊢ 0 ∈ ℝ* |
35 |
|
1xr |
⊢ 1 ∈ ℝ* |
36 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ* ) → ( 𝐸 ∈ ( 0 (,) 1 ) ↔ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1 ) ) ) |
37 |
34 35 36
|
mp2an |
⊢ ( 𝐸 ∈ ( 0 (,) 1 ) ↔ ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ∧ 𝐸 < 1 ) ) |
38 |
19 20 33 37
|
syl3anbrc |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 (,) 1 ) ) |
39 |
|
efgt1 |
⊢ ( ( 𝐵 / 𝐸 ) ∈ ℝ+ → 1 < ( exp ‘ ( 𝐵 / 𝐸 ) ) ) |
40 |
15 39
|
syl |
⊢ ( 𝜑 → 1 < ( exp ‘ ( 𝐵 / 𝐸 ) ) ) |
41 |
40 10
|
breqtrrdi |
⊢ ( 𝜑 → 1 < 𝐾 ) |
42 |
|
1re |
⊢ 1 ∈ ℝ |
43 |
|
ltaddrp |
⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 1 < ( 1 + 𝐴 ) ) |
44 |
42 2 43
|
sylancr |
⊢ ( 𝜑 → 1 < ( 1 + 𝐴 ) ) |
45 |
7
|
rpcnne0d |
⊢ ( 𝜑 → ( 𝑈 ∈ ℂ ∧ 𝑈 ≠ 0 ) ) |
46 |
|
divid |
⊢ ( ( 𝑈 ∈ ℂ ∧ 𝑈 ≠ 0 ) → ( 𝑈 / 𝑈 ) = 1 ) |
47 |
45 46
|
syl |
⊢ ( 𝜑 → ( 𝑈 / 𝑈 ) = 1 ) |
48 |
2
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
49 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
50 |
|
addcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |
51 |
48 49 50
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |
52 |
5 51
|
syl5eq |
⊢ ( 𝜑 → 𝐷 = ( 1 + 𝐴 ) ) |
53 |
44 47 52
|
3brtr4d |
⊢ ( 𝜑 → ( 𝑈 / 𝑈 ) < 𝐷 ) |
54 |
21 7 12 53
|
ltdiv23d |
⊢ ( 𝜑 → ( 𝑈 / 𝐷 ) < 𝑈 ) |
55 |
9 54
|
eqbrtrid |
⊢ ( 𝜑 → 𝐸 < 𝑈 ) |
56 |
|
difrp |
⊢ ( ( 𝐸 ∈ ℝ ∧ 𝑈 ∈ ℝ ) → ( 𝐸 < 𝑈 ↔ ( 𝑈 − 𝐸 ) ∈ ℝ+ ) ) |
57 |
19 21 56
|
syl2anc |
⊢ ( 𝜑 → ( 𝐸 < 𝑈 ↔ ( 𝑈 − 𝐸 ) ∈ ℝ+ ) ) |
58 |
55 57
|
mpbid |
⊢ ( 𝜑 → ( 𝑈 − 𝐸 ) ∈ ℝ+ ) |
59 |
38 41 58
|
3jca |
⊢ ( 𝜑 → ( 𝐸 ∈ ( 0 (,) 1 ) ∧ 1 < 𝐾 ∧ ( 𝑈 − 𝐸 ) ∈ ℝ+ ) ) |
60 |
14 18 59
|
3jca |
⊢ ( 𝜑 → ( 𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ ( 𝐸 ∈ ( 0 (,) 1 ) ∧ 1 < 𝐾 ∧ ( 𝑈 − 𝐸 ) ∈ ℝ+ ) ) ) |