Metamath Proof Explorer


Theorem pntlemd

Description: Lemma for pnt . Closure for the constants used in the proof. For comparison with Equation 10.6.27 of Shapiro, p. 434, A is C^*, B is c_1, L is λ, D is c_2, and F is c_3. (Contributed by Mario Carneiro, 13-Apr-2016)

Ref Expression
Hypotheses pntlem1.r 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) )
pntlem1.a ( 𝜑𝐴 ∈ ℝ+ )
pntlem1.b ( 𝜑𝐵 ∈ ℝ+ )
pntlem1.l ( 𝜑𝐿 ∈ ( 0 (,) 1 ) )
pntlem1.d 𝐷 = ( 𝐴 + 1 )
pntlem1.f 𝐹 = ( ( 1 − ( 1 / 𝐷 ) ) · ( ( 𝐿 / ( 3 2 · 𝐵 ) ) / ( 𝐷 ↑ 2 ) ) )
Assertion pntlemd ( 𝜑 → ( 𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+ ) )

Proof

Step Hyp Ref Expression
1 pntlem1.r 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) )
2 pntlem1.a ( 𝜑𝐴 ∈ ℝ+ )
3 pntlem1.b ( 𝜑𝐵 ∈ ℝ+ )
4 pntlem1.l ( 𝜑𝐿 ∈ ( 0 (,) 1 ) )
5 pntlem1.d 𝐷 = ( 𝐴 + 1 )
6 pntlem1.f 𝐹 = ( ( 1 − ( 1 / 𝐷 ) ) · ( ( 𝐿 / ( 3 2 · 𝐵 ) ) / ( 𝐷 ↑ 2 ) ) )
7 ioossre ( 0 (,) 1 ) ⊆ ℝ
8 7 4 sselid ( 𝜑𝐿 ∈ ℝ )
9 eliooord ( 𝐿 ∈ ( 0 (,) 1 ) → ( 0 < 𝐿𝐿 < 1 ) )
10 4 9 syl ( 𝜑 → ( 0 < 𝐿𝐿 < 1 ) )
11 10 simpld ( 𝜑 → 0 < 𝐿 )
12 8 11 elrpd ( 𝜑𝐿 ∈ ℝ+ )
13 1rp 1 ∈ ℝ+
14 rpaddcl ( ( 𝐴 ∈ ℝ+ ∧ 1 ∈ ℝ+ ) → ( 𝐴 + 1 ) ∈ ℝ+ )
15 2 13 14 sylancl ( 𝜑 → ( 𝐴 + 1 ) ∈ ℝ+ )
16 5 15 eqeltrid ( 𝜑𝐷 ∈ ℝ+ )
17 1re 1 ∈ ℝ
18 ltaddrp ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ+ ) → 1 < ( 1 + 𝐴 ) )
19 17 2 18 sylancr ( 𝜑 → 1 < ( 1 + 𝐴 ) )
20 2 rpcnd ( 𝜑𝐴 ∈ ℂ )
21 ax-1cn 1 ∈ ℂ
22 addcom ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) )
23 20 21 22 sylancl ( 𝜑 → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) )
24 5 23 syl5eq ( 𝜑𝐷 = ( 1 + 𝐴 ) )
25 19 24 breqtrrd ( 𝜑 → 1 < 𝐷 )
26 16 recgt1d ( 𝜑 → ( 1 < 𝐷 ↔ ( 1 / 𝐷 ) < 1 ) )
27 25 26 mpbid ( 𝜑 → ( 1 / 𝐷 ) < 1 )
28 16 rprecred ( 𝜑 → ( 1 / 𝐷 ) ∈ ℝ )
29 difrp ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 / 𝐷 ) < 1 ↔ ( 1 − ( 1 / 𝐷 ) ) ∈ ℝ+ ) )
30 28 17 29 sylancl ( 𝜑 → ( ( 1 / 𝐷 ) < 1 ↔ ( 1 − ( 1 / 𝐷 ) ) ∈ ℝ+ ) )
31 27 30 mpbid ( 𝜑 → ( 1 − ( 1 / 𝐷 ) ) ∈ ℝ+ )
32 3nn0 3 ∈ ℕ0
33 2nn 2 ∈ ℕ
34 32 33 decnncl 3 2 ∈ ℕ
35 nnrp ( 3 2 ∈ ℕ → 3 2 ∈ ℝ+ )
36 34 35 ax-mp 3 2 ∈ ℝ+
37 rpmulcl ( ( 3 2 ∈ ℝ+𝐵 ∈ ℝ+ ) → ( 3 2 · 𝐵 ) ∈ ℝ+ )
38 36 3 37 sylancr ( 𝜑 → ( 3 2 · 𝐵 ) ∈ ℝ+ )
39 12 38 rpdivcld ( 𝜑 → ( 𝐿 / ( 3 2 · 𝐵 ) ) ∈ ℝ+ )
40 2z 2 ∈ ℤ
41 rpexpcl ( ( 𝐷 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( 𝐷 ↑ 2 ) ∈ ℝ+ )
42 16 40 41 sylancl ( 𝜑 → ( 𝐷 ↑ 2 ) ∈ ℝ+ )
43 39 42 rpdivcld ( 𝜑 → ( ( 𝐿 / ( 3 2 · 𝐵 ) ) / ( 𝐷 ↑ 2 ) ) ∈ ℝ+ )
44 31 43 rpmulcld ( 𝜑 → ( ( 1 − ( 1 / 𝐷 ) ) · ( ( 𝐿 / ( 3 2 · 𝐵 ) ) / ( 𝐷 ↑ 2 ) ) ) ∈ ℝ+ )
45 6 44 eqeltrid ( 𝜑𝐹 ∈ ℝ+ )
46 12 16 45 3jca ( 𝜑 → ( 𝐿 ∈ ℝ+𝐷 ∈ ℝ+𝐹 ∈ ℝ+ ) )