Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
2 |
|
pntlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
3 |
|
pntlem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
4 |
|
pntlem1.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 (,) 1 ) ) |
5 |
|
pntlem1.d |
⊢ 𝐷 = ( 𝐴 + 1 ) |
6 |
|
pntlem1.f |
⊢ 𝐹 = ( ( 1 − ( 1 / 𝐷 ) ) · ( ( 𝐿 / ( ; 3 2 · 𝐵 ) ) / ( 𝐷 ↑ 2 ) ) ) |
7 |
|
pntlem1.u |
⊢ ( 𝜑 → 𝑈 ∈ ℝ+ ) |
8 |
|
pntlem1.u2 |
⊢ ( 𝜑 → 𝑈 ≤ 𝐴 ) |
9 |
|
pntlem1.e |
⊢ 𝐸 = ( 𝑈 / 𝐷 ) |
10 |
|
pntlem1.k |
⊢ 𝐾 = ( exp ‘ ( 𝐵 / 𝐸 ) ) |
11 |
|
pntlem1.y |
⊢ ( 𝜑 → ( 𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌 ) ) |
12 |
|
pntlem1.x |
⊢ ( 𝜑 → ( 𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋 ) ) |
13 |
|
pntlem1.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
14 |
|
pntlem1.w |
⊢ 𝑊 = ( ( ( 𝑌 + ( 4 / ( 𝐿 · 𝐸 ) ) ) ↑ 2 ) + ( ( ( 𝑋 · ( 𝐾 ↑ 2 ) ) ↑ 4 ) + ( exp ‘ ( ( ( ; 3 2 · 𝐵 ) / ( ( 𝑈 − 𝐸 ) · ( 𝐿 · ( 𝐸 ↑ 2 ) ) ) ) · ( ( 𝑈 · 3 ) + 𝐶 ) ) ) ) ) |
15 |
|
pntlem1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑊 [,) +∞ ) ) |
16 |
|
pntlem1.m |
⊢ 𝑀 = ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + 1 ) |
17 |
|
pntlem1.n |
⊢ 𝑁 = ( ⌊ ‘ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) |
18 |
12
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
19 |
18
|
rpred |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
20 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
21 |
11
|
simpld |
⊢ ( 𝜑 → 𝑌 ∈ ℝ+ ) |
22 |
21
|
rpred |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
23 |
11
|
simprd |
⊢ ( 𝜑 → 1 ≤ 𝑌 ) |
24 |
12
|
simprd |
⊢ ( 𝜑 → 𝑌 < 𝑋 ) |
25 |
20 22 19 23 24
|
lelttrd |
⊢ ( 𝜑 → 1 < 𝑋 ) |
26 |
19 25
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝑋 ) ∈ ℝ+ ) |
27 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
⊢ ( 𝜑 → ( 𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ ( 𝐸 ∈ ( 0 (,) 1 ) ∧ 1 < 𝐾 ∧ ( 𝑈 − 𝐸 ) ∈ ℝ+ ) ) ) |
28 |
27
|
simp2d |
⊢ ( 𝜑 → 𝐾 ∈ ℝ+ ) |
29 |
28
|
rpred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
30 |
27
|
simp3d |
⊢ ( 𝜑 → ( 𝐸 ∈ ( 0 (,) 1 ) ∧ 1 < 𝐾 ∧ ( 𝑈 − 𝐸 ) ∈ ℝ+ ) ) |
31 |
30
|
simp2d |
⊢ ( 𝜑 → 1 < 𝐾 ) |
32 |
29 31
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝐾 ) ∈ ℝ+ ) |
33 |
26 32
|
rpdivcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ∈ ℝ+ ) |
34 |
33
|
rprege0d |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ∈ ℝ ∧ 0 ≤ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) ) |
35 |
|
flge0nn0 |
⊢ ( ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ∈ ℝ ∧ 0 ≤ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) → ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) ∈ ℕ0 ) |
36 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + 1 ) ∈ ℕ ) |
37 |
34 35 36
|
3syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + 1 ) ∈ ℕ ) |
38 |
16 37
|
eqeltrid |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
39 |
38
|
nnzd |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
⊢ ( 𝜑 → ( 𝑍 ∈ ℝ+ ∧ ( 1 < 𝑍 ∧ e ≤ ( √ ‘ 𝑍 ) ∧ ( √ ‘ 𝑍 ) ≤ ( 𝑍 / 𝑌 ) ) ∧ ( ( 4 / ( 𝐿 · 𝐸 ) ) ≤ ( √ ‘ 𝑍 ) ∧ ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) + 2 ) ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ∧ ( ( 𝑈 · 3 ) + 𝐶 ) ≤ ( ( ( 𝑈 − 𝐸 ) · ( ( 𝐿 · ( 𝐸 ↑ 2 ) ) / ( ; 3 2 · 𝐵 ) ) ) · ( log ‘ 𝑍 ) ) ) ) ) |
41 |
40
|
simp1d |
⊢ ( 𝜑 → 𝑍 ∈ ℝ+ ) |
42 |
41
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑍 ) ∈ ℝ ) |
43 |
42 32
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) ∈ ℝ ) |
44 |
43
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ∈ ℝ ) |
45 |
44
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) ∈ ℤ ) |
46 |
17 45
|
eqeltrid |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
47 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
48 |
|
4nn |
⊢ 4 ∈ ℕ |
49 |
|
nndivre |
⊢ ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) ∈ ℝ ∧ 4 ∈ ℕ ) → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ∈ ℝ ) |
50 |
43 48 49
|
sylancl |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ∈ ℝ ) |
51 |
46
|
zred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
52 |
38
|
nnred |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
53 |
51 52
|
resubcld |
⊢ ( 𝜑 → ( 𝑁 − 𝑀 ) ∈ ℝ ) |
54 |
41
|
rpred |
⊢ ( 𝜑 → 𝑍 ∈ ℝ ) |
55 |
40
|
simp2d |
⊢ ( 𝜑 → ( 1 < 𝑍 ∧ e ≤ ( √ ‘ 𝑍 ) ∧ ( √ ‘ 𝑍 ) ≤ ( 𝑍 / 𝑌 ) ) ) |
56 |
55
|
simp1d |
⊢ ( 𝜑 → 1 < 𝑍 ) |
57 |
54 56
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝑍 ) ∈ ℝ+ ) |
58 |
57 32
|
rpdivcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) ∈ ℝ+ ) |
59 |
|
4re |
⊢ 4 ∈ ℝ |
60 |
|
4pos |
⊢ 0 < 4 |
61 |
59 60
|
elrpii |
⊢ 4 ∈ ℝ+ |
62 |
|
rpdivcl |
⊢ ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) ∈ ℝ+ ∧ 4 ∈ ℝ+ ) → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ∈ ℝ+ ) |
63 |
58 61 62
|
sylancl |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ∈ ℝ+ ) |
64 |
63
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ) |
65 |
50
|
recnd |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ∈ ℂ ) |
66 |
38
|
nncnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
67 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
68 |
65 66 67
|
addassd |
⊢ ( 𝜑 → ( ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + 𝑀 ) + 1 ) = ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + ( 𝑀 + 1 ) ) ) |
69 |
52 20
|
readdcld |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℝ ) |
70 |
50 69
|
readdcld |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + ( 𝑀 + 1 ) ) ∈ ℝ ) |
71 |
|
peano2re |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) |
72 |
51 71
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℝ ) |
73 |
33
|
rpred |
⊢ ( 𝜑 → ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ∈ ℝ ) |
74 |
|
2re |
⊢ 2 ∈ ℝ |
75 |
74
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
76 |
73 75
|
readdcld |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) + 2 ) ∈ ℝ ) |
77 |
|
reflcl |
⊢ ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ∈ ℝ → ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) ∈ ℝ ) |
78 |
73 77
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) ∈ ℝ ) |
79 |
78
|
recnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) ∈ ℂ ) |
80 |
79 67 67
|
addassd |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + 1 ) + 1 ) = ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + ( 1 + 1 ) ) ) |
81 |
16
|
oveq1i |
⊢ ( 𝑀 + 1 ) = ( ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + 1 ) + 1 ) |
82 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
83 |
82
|
oveq2i |
⊢ ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + 2 ) = ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + ( 1 + 1 ) ) |
84 |
80 81 83
|
3eqtr4g |
⊢ ( 𝜑 → ( 𝑀 + 1 ) = ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + 2 ) ) |
85 |
|
flle |
⊢ ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ∈ ℝ → ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) ≤ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) |
86 |
73 85
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) ≤ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) |
87 |
78 73 75 86
|
leadd1dd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + 2 ) ≤ ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) + 2 ) ) |
88 |
84 87
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ≤ ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) + 2 ) ) |
89 |
40
|
simp3d |
⊢ ( 𝜑 → ( ( 4 / ( 𝐿 · 𝐸 ) ) ≤ ( √ ‘ 𝑍 ) ∧ ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) + 2 ) ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ∧ ( ( 𝑈 · 3 ) + 𝐶 ) ≤ ( ( ( 𝑈 − 𝐸 ) · ( ( 𝐿 · ( 𝐸 ↑ 2 ) ) / ( ; 3 2 · 𝐵 ) ) ) · ( log ‘ 𝑍 ) ) ) ) |
90 |
89
|
simp2d |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) + 2 ) ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ) |
91 |
69 76 50 88 90
|
letrd |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ) |
92 |
69 50 50 91
|
leadd2dd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + ( 𝑀 + 1 ) ) ≤ ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ) ) |
93 |
43
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) ∈ ℂ ) |
94 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
95 |
|
2ne0 |
⊢ 2 ≠ 0 |
96 |
95
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
97 |
93 94 94 96 96
|
divdiv1d |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) / 2 ) = ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / ( 2 · 2 ) ) ) |
98 |
|
2t2e4 |
⊢ ( 2 · 2 ) = 4 |
99 |
98
|
oveq2i |
⊢ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / ( 2 · 2 ) ) = ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) |
100 |
97 99
|
eqtrdi |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) / 2 ) = ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ) |
101 |
100
|
oveq2d |
⊢ ( 𝜑 → ( 2 · ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) / 2 ) ) = ( 2 · ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ) ) |
102 |
44
|
recnd |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ∈ ℂ ) |
103 |
102 94 96
|
divcan2d |
⊢ ( 𝜑 → ( 2 · ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) / 2 ) ) = ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) |
104 |
65
|
2timesd |
⊢ ( 𝜑 → ( 2 · ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ) = ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ) ) |
105 |
101 103 104
|
3eqtr3d |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) = ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ) ) |
106 |
92 105
|
breqtrrd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + ( 𝑀 + 1 ) ) ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) |
107 |
|
fllep1 |
⊢ ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ∈ ℝ → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ≤ ( ( ⌊ ‘ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) + 1 ) ) |
108 |
44 107
|
syl |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ≤ ( ( ⌊ ‘ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) + 1 ) ) |
109 |
17
|
oveq1i |
⊢ ( 𝑁 + 1 ) = ( ( ⌊ ‘ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) + 1 ) |
110 |
108 109
|
breqtrrdi |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ≤ ( 𝑁 + 1 ) ) |
111 |
70 44 72 106 110
|
letrd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + ( 𝑀 + 1 ) ) ≤ ( 𝑁 + 1 ) ) |
112 |
68 111
|
eqbrtrd |
⊢ ( 𝜑 → ( ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + 𝑀 ) + 1 ) ≤ ( 𝑁 + 1 ) ) |
113 |
50 52
|
readdcld |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + 𝑀 ) ∈ ℝ ) |
114 |
113 51 20
|
leadd1d |
⊢ ( 𝜑 → ( ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + 𝑀 ) ≤ 𝑁 ↔ ( ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + 𝑀 ) + 1 ) ≤ ( 𝑁 + 1 ) ) ) |
115 |
112 114
|
mpbird |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + 𝑀 ) ≤ 𝑁 ) |
116 |
|
leaddsub |
⊢ ( ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + 𝑀 ) ≤ 𝑁 ↔ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ≤ ( 𝑁 − 𝑀 ) ) ) |
117 |
50 52 51 116
|
syl3anc |
⊢ ( 𝜑 → ( ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) + 𝑀 ) ≤ 𝑁 ↔ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ≤ ( 𝑁 − 𝑀 ) ) ) |
118 |
115 117
|
mpbid |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ≤ ( 𝑁 − 𝑀 ) ) |
119 |
47 50 53 64 118
|
letrd |
⊢ ( 𝜑 → 0 ≤ ( 𝑁 − 𝑀 ) ) |
120 |
51 52
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( 𝑁 − 𝑀 ) ↔ 𝑀 ≤ 𝑁 ) ) |
121 |
119 120
|
mpbid |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
122 |
|
eluz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) |
123 |
39 46 121 122
|
syl3anbrc |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
124 |
38 123 118
|
3jca |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ≤ ( 𝑁 − 𝑀 ) ) ) |