Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
2 |
|
pntlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
3 |
|
pntlem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
4 |
|
pntlem1.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 (,) 1 ) ) |
5 |
|
pntlem1.d |
⊢ 𝐷 = ( 𝐴 + 1 ) |
6 |
|
pntlem1.f |
⊢ 𝐹 = ( ( 1 − ( 1 / 𝐷 ) ) · ( ( 𝐿 / ( ; 3 2 · 𝐵 ) ) / ( 𝐷 ↑ 2 ) ) ) |
7 |
|
pntlem1.u |
⊢ ( 𝜑 → 𝑈 ∈ ℝ+ ) |
8 |
|
pntlem1.u2 |
⊢ ( 𝜑 → 𝑈 ≤ 𝐴 ) |
9 |
|
pntlem1.e |
⊢ 𝐸 = ( 𝑈 / 𝐷 ) |
10 |
|
pntlem1.k |
⊢ 𝐾 = ( exp ‘ ( 𝐵 / 𝐸 ) ) |
11 |
|
pntlem1.y |
⊢ ( 𝜑 → ( 𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌 ) ) |
12 |
|
pntlem1.x |
⊢ ( 𝜑 → ( 𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋 ) ) |
13 |
|
pntlem1.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
14 |
|
pntlem1.w |
⊢ 𝑊 = ( ( ( 𝑌 + ( 4 / ( 𝐿 · 𝐸 ) ) ) ↑ 2 ) + ( ( ( 𝑋 · ( 𝐾 ↑ 2 ) ) ↑ 4 ) + ( exp ‘ ( ( ( ; 3 2 · 𝐵 ) / ( ( 𝑈 − 𝐸 ) · ( 𝐿 · ( 𝐸 ↑ 2 ) ) ) ) · ( ( 𝑈 · 3 ) + 𝐶 ) ) ) ) ) |
15 |
|
pntlem1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑊 [,) +∞ ) ) |
16 |
|
pntlem1.m |
⊢ 𝑀 = ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + 1 ) |
17 |
|
pntlem1.n |
⊢ 𝑁 = ( ⌊ ‘ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) |
18 |
12
|
simpld |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑋 ∈ ℝ+ ) |
20 |
19
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( log ‘ 𝑋 ) ∈ ℝ ) |
21 |
1 2 3 4 5 6 7 8 9 10
|
pntlemc |
⊢ ( 𝜑 → ( 𝐸 ∈ ℝ+ ∧ 𝐾 ∈ ℝ+ ∧ ( 𝐸 ∈ ( 0 (,) 1 ) ∧ 1 < 𝐾 ∧ ( 𝑈 − 𝐸 ) ∈ ℝ+ ) ) ) |
22 |
21
|
simp2d |
⊢ ( 𝜑 → 𝐾 ∈ ℝ+ ) |
23 |
22
|
rpred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
24 |
21
|
simp3d |
⊢ ( 𝜑 → ( 𝐸 ∈ ( 0 (,) 1 ) ∧ 1 < 𝐾 ∧ ( 𝑈 − 𝐸 ) ∈ ℝ+ ) ) |
25 |
24
|
simp2d |
⊢ ( 𝜑 → 1 < 𝐾 ) |
26 |
23 25
|
rplogcld |
⊢ ( 𝜑 → ( log ‘ 𝐾 ) ∈ ℝ+ ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( log ‘ 𝐾 ) ∈ ℝ+ ) |
28 |
20 27
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ∈ ℝ ) |
29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|
pntlemg |
⊢ ( 𝜑 → ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ≤ ( 𝑁 − 𝑀 ) ) ) |
30 |
29
|
simp1d |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℕ ) |
32 |
31
|
nnred |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ∈ ℝ ) |
33 |
|
elfzuz |
⊢ ( 𝐽 ∈ ( 𝑀 ... 𝑁 ) → 𝐽 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
34 |
|
eluznn |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝐽 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝐽 ∈ ℕ ) |
35 |
30 33 34
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐽 ∈ ℕ ) |
36 |
35
|
nnred |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐽 ∈ ℝ ) |
37 |
|
flltp1 |
⊢ ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ∈ ℝ → ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) < ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + 1 ) ) |
38 |
28 37
|
syl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) < ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + 1 ) ) |
39 |
38 16
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) < 𝑀 ) |
40 |
|
elfzle1 |
⊢ ( 𝐽 ∈ ( 𝑀 ... 𝑁 ) → 𝑀 ≤ 𝐽 ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑀 ≤ 𝐽 ) |
42 |
28 32 36 39 41
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) < 𝐽 ) |
43 |
20 36 27
|
ltdivmul2d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) < 𝐽 ↔ ( log ‘ 𝑋 ) < ( 𝐽 · ( log ‘ 𝐾 ) ) ) ) |
44 |
42 43
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( log ‘ 𝑋 ) < ( 𝐽 · ( log ‘ 𝐾 ) ) ) |
45 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐾 ∈ ℝ+ ) |
46 |
|
elfzelz |
⊢ ( 𝐽 ∈ ( 𝑀 ... 𝑁 ) → 𝐽 ∈ ℤ ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐽 ∈ ℤ ) |
48 |
|
relogexp |
⊢ ( ( 𝐾 ∈ ℝ+ ∧ 𝐽 ∈ ℤ ) → ( log ‘ ( 𝐾 ↑ 𝐽 ) ) = ( 𝐽 · ( log ‘ 𝐾 ) ) ) |
49 |
45 47 48
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( log ‘ ( 𝐾 ↑ 𝐽 ) ) = ( 𝐽 · ( log ‘ 𝐾 ) ) ) |
50 |
44 49
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( log ‘ 𝑋 ) < ( log ‘ ( 𝐾 ↑ 𝐽 ) ) ) |
51 |
45 47
|
rpexpcld |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐾 ↑ 𝐽 ) ∈ ℝ+ ) |
52 |
|
logltb |
⊢ ( ( 𝑋 ∈ ℝ+ ∧ ( 𝐾 ↑ 𝐽 ) ∈ ℝ+ ) → ( 𝑋 < ( 𝐾 ↑ 𝐽 ) ↔ ( log ‘ 𝑋 ) < ( log ‘ ( 𝐾 ↑ 𝐽 ) ) ) ) |
53 |
19 51 52
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑋 < ( 𝐾 ↑ 𝐽 ) ↔ ( log ‘ 𝑋 ) < ( log ‘ ( 𝐾 ↑ 𝐽 ) ) ) ) |
54 |
50 53
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑋 < ( 𝐾 ↑ 𝐽 ) ) |
55 |
49
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( 2 · ( log ‘ ( 𝐾 ↑ 𝐽 ) ) ) = ( 2 · ( 𝐽 · ( log ‘ 𝐾 ) ) ) ) |
56 |
|
2z |
⊢ 2 ∈ ℤ |
57 |
|
relogexp |
⊢ ( ( ( 𝐾 ↑ 𝐽 ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( log ‘ ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) ) = ( 2 · ( log ‘ ( 𝐾 ↑ 𝐽 ) ) ) ) |
58 |
51 56 57
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( log ‘ ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) ) = ( 2 · ( log ‘ ( 𝐾 ↑ 𝐽 ) ) ) ) |
59 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 2 ∈ ℂ ) |
60 |
36
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐽 ∈ ℂ ) |
61 |
45
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( log ‘ 𝐾 ) ∈ ℝ ) |
62 |
61
|
recnd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( log ‘ 𝐾 ) ∈ ℂ ) |
63 |
59 60 62
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 2 · 𝐽 ) · ( log ‘ 𝐾 ) ) = ( 2 · ( 𝐽 · ( log ‘ 𝐾 ) ) ) ) |
64 |
55 58 63
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( log ‘ ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) ) = ( ( 2 · 𝐽 ) · ( log ‘ 𝐾 ) ) ) |
65 |
|
elfzle2 |
⊢ ( 𝐽 ∈ ( 𝑀 ... 𝑁 ) → 𝐽 ≤ 𝑁 ) |
66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐽 ≤ 𝑁 ) |
67 |
66 17
|
breqtrdi |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐽 ≤ ( ⌊ ‘ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) ) |
68 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
⊢ ( 𝜑 → ( 𝑍 ∈ ℝ+ ∧ ( 1 < 𝑍 ∧ e ≤ ( √ ‘ 𝑍 ) ∧ ( √ ‘ 𝑍 ) ≤ ( 𝑍 / 𝑌 ) ) ∧ ( ( 4 / ( 𝐿 · 𝐸 ) ) ≤ ( √ ‘ 𝑍 ) ∧ ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) + 2 ) ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ∧ ( ( 𝑈 · 3 ) + 𝐶 ) ≤ ( ( ( 𝑈 − 𝐸 ) · ( ( 𝐿 · ( 𝐸 ↑ 2 ) ) / ( ; 3 2 · 𝐵 ) ) ) · ( log ‘ 𝑍 ) ) ) ) ) |
69 |
68
|
simp1d |
⊢ ( 𝜑 → 𝑍 ∈ ℝ+ ) |
70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝑍 ∈ ℝ+ ) |
71 |
70
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( log ‘ 𝑍 ) ∈ ℝ ) |
72 |
71 27
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) ∈ ℝ ) |
73 |
72
|
rehalfcld |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ∈ ℝ ) |
74 |
|
flge |
⊢ ( ( ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ∈ ℝ ∧ 𝐽 ∈ ℤ ) → ( 𝐽 ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ↔ 𝐽 ≤ ( ⌊ ‘ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) ) ) |
75 |
73 47 74
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐽 ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ↔ 𝐽 ≤ ( ⌊ ‘ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) ) ) |
76 |
67 75
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐽 ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) |
77 |
|
2re |
⊢ 2 ∈ ℝ |
78 |
77
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 2 ∈ ℝ ) |
79 |
|
2pos |
⊢ 0 < 2 |
80 |
79
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → 0 < 2 ) |
81 |
|
lemuldiv2 |
⊢ ( ( 𝐽 ∈ ℝ ∧ ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · 𝐽 ) ≤ ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) ↔ 𝐽 ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) ) |
82 |
36 72 78 80 81
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 2 · 𝐽 ) ≤ ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) ↔ 𝐽 ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) ) |
83 |
76 82
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( 2 · 𝐽 ) ≤ ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) ) |
84 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐽 ∈ ℝ ) → ( 2 · 𝐽 ) ∈ ℝ ) |
85 |
77 36 84
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( 2 · 𝐽 ) ∈ ℝ ) |
86 |
85 71 27
|
lemuldivd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 2 · 𝐽 ) · ( log ‘ 𝐾 ) ) ≤ ( log ‘ 𝑍 ) ↔ ( 2 · 𝐽 ) ≤ ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) ) ) |
87 |
83 86
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 2 · 𝐽 ) · ( log ‘ 𝐾 ) ) ≤ ( log ‘ 𝑍 ) ) |
88 |
64 87
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( log ‘ ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) ) ≤ ( log ‘ 𝑍 ) ) |
89 |
|
rpexpcl |
⊢ ( ( ( 𝐾 ↑ 𝐽 ) ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) ∈ ℝ+ ) |
90 |
51 56 89
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) ∈ ℝ+ ) |
91 |
90 70
|
logled |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) ≤ 𝑍 ↔ ( log ‘ ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) ) ≤ ( log ‘ 𝑍 ) ) ) |
92 |
88 91
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) ≤ 𝑍 ) |
93 |
70
|
rprege0d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑍 ∈ ℝ ∧ 0 ≤ 𝑍 ) ) |
94 |
|
resqrtth |
⊢ ( ( 𝑍 ∈ ℝ ∧ 0 ≤ 𝑍 ) → ( ( √ ‘ 𝑍 ) ↑ 2 ) = 𝑍 ) |
95 |
93 94
|
syl |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( √ ‘ 𝑍 ) ↑ 2 ) = 𝑍 ) |
96 |
92 95
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑍 ) ↑ 2 ) ) |
97 |
51
|
rprege0d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐾 ↑ 𝐽 ) ∈ ℝ ∧ 0 ≤ ( 𝐾 ↑ 𝐽 ) ) ) |
98 |
70
|
rpsqrtcld |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( √ ‘ 𝑍 ) ∈ ℝ+ ) |
99 |
98
|
rprege0d |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( √ ‘ 𝑍 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑍 ) ) ) |
100 |
|
le2sq |
⊢ ( ( ( ( 𝐾 ↑ 𝐽 ) ∈ ℝ ∧ 0 ≤ ( 𝐾 ↑ 𝐽 ) ) ∧ ( ( √ ‘ 𝑍 ) ∈ ℝ ∧ 0 ≤ ( √ ‘ 𝑍 ) ) ) → ( ( 𝐾 ↑ 𝐽 ) ≤ ( √ ‘ 𝑍 ) ↔ ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑍 ) ↑ 2 ) ) ) |
101 |
97 99 100
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( ( 𝐾 ↑ 𝐽 ) ≤ ( √ ‘ 𝑍 ) ↔ ( ( 𝐾 ↑ 𝐽 ) ↑ 2 ) ≤ ( ( √ ‘ 𝑍 ) ↑ 2 ) ) ) |
102 |
96 101
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐾 ↑ 𝐽 ) ≤ ( √ ‘ 𝑍 ) ) |
103 |
54 102
|
jca |
⊢ ( ( 𝜑 ∧ 𝐽 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝑋 < ( 𝐾 ↑ 𝐽 ) ∧ ( 𝐾 ↑ 𝐽 ) ≤ ( √ ‘ 𝑍 ) ) ) |