Step |
Hyp |
Ref |
Expression |
1 |
|
pntlem1.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
2 |
|
pntlem1.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
3 |
|
pntlem1.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
4 |
|
pntlem1.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 0 (,) 1 ) ) |
5 |
|
pntlem1.d |
⊢ 𝐷 = ( 𝐴 + 1 ) |
6 |
|
pntlem1.f |
⊢ 𝐹 = ( ( 1 − ( 1 / 𝐷 ) ) · ( ( 𝐿 / ( ; 3 2 · 𝐵 ) ) / ( 𝐷 ↑ 2 ) ) ) |
7 |
|
pntlem1.u |
⊢ ( 𝜑 → 𝑈 ∈ ℝ+ ) |
8 |
|
pntlem1.u2 |
⊢ ( 𝜑 → 𝑈 ≤ 𝐴 ) |
9 |
|
pntlem1.e |
⊢ 𝐸 = ( 𝑈 / 𝐷 ) |
10 |
|
pntlem1.k |
⊢ 𝐾 = ( exp ‘ ( 𝐵 / 𝐸 ) ) |
11 |
|
pntlem1.y |
⊢ ( 𝜑 → ( 𝑌 ∈ ℝ+ ∧ 1 ≤ 𝑌 ) ) |
12 |
|
pntlem1.x |
⊢ ( 𝜑 → ( 𝑋 ∈ ℝ+ ∧ 𝑌 < 𝑋 ) ) |
13 |
|
pntlem1.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
14 |
|
pntlem1.w |
⊢ 𝑊 = ( ( ( 𝑌 + ( 4 / ( 𝐿 · 𝐸 ) ) ) ↑ 2 ) + ( ( ( 𝑋 · ( 𝐾 ↑ 2 ) ) ↑ 4 ) + ( exp ‘ ( ( ( ; 3 2 · 𝐵 ) / ( ( 𝑈 − 𝐸 ) · ( 𝐿 · ( 𝐸 ↑ 2 ) ) ) ) · ( ( 𝑈 · 3 ) + 𝐶 ) ) ) ) ) |
15 |
|
pntlem1.z |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝑊 [,) +∞ ) ) |
16 |
|
pntlem1.m |
⊢ 𝑀 = ( ( ⌊ ‘ ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) ) + 1 ) |
17 |
|
pntlem1.n |
⊢ 𝑁 = ( ⌊ ‘ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 2 ) ) |
18 |
|
pntlem1.U |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑌 [,) +∞ ) ( abs ‘ ( ( 𝑅 ‘ 𝑧 ) / 𝑧 ) ) ≤ 𝑈 ) |
19 |
|
pntlem1.K |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝑋 (,) +∞ ) ∃ 𝑧 ∈ ℝ+ ( ( 𝑦 < 𝑧 ∧ ( ( 1 + ( 𝐿 · 𝐸 ) ) · 𝑧 ) < ( 𝐾 · 𝑦 ) ) ∧ ∀ 𝑢 ∈ ( 𝑧 [,] ( ( 1 + ( 𝐿 · 𝐸 ) ) · 𝑧 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑢 ) / 𝑢 ) ) ≤ 𝐸 ) ) |
20 |
|
2re |
⊢ 2 ∈ ℝ |
21 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ∈ Fin ) |
22 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) → 𝑛 ∈ ℕ ) |
23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) → 𝑛 ∈ ℕ ) |
24 |
23
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) → 𝑛 ∈ ℝ+ ) |
25 |
24
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
26 |
25 23
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) → ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
27 |
21 26
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
28 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ∈ ℝ ) |
29 |
20 27 28
|
sylancr |
⊢ ( 𝜑 → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ∈ ℝ ) |
30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pntlemb |
⊢ ( 𝜑 → ( 𝑍 ∈ ℝ+ ∧ ( 1 < 𝑍 ∧ e ≤ ( √ ‘ 𝑍 ) ∧ ( √ ‘ 𝑍 ) ≤ ( 𝑍 / 𝑌 ) ) ∧ ( ( 4 / ( 𝐿 · 𝐸 ) ) ≤ ( √ ‘ 𝑍 ) ∧ ( ( ( log ‘ 𝑋 ) / ( log ‘ 𝐾 ) ) + 2 ) ≤ ( ( ( log ‘ 𝑍 ) / ( log ‘ 𝐾 ) ) / 4 ) ∧ ( ( 𝑈 · 3 ) + 𝐶 ) ≤ ( ( ( 𝑈 − 𝐸 ) · ( ( 𝐿 · ( 𝐸 ↑ 2 ) ) / ( ; 3 2 · 𝐵 ) ) ) · ( log ‘ 𝑍 ) ) ) ) ) |
31 |
30
|
simp1d |
⊢ ( 𝜑 → 𝑍 ∈ ℝ+ ) |
32 |
31
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑍 ) ∈ ℝ ) |
33 |
|
peano2re |
⊢ ( ( log ‘ 𝑍 ) ∈ ℝ → ( ( log ‘ 𝑍 ) + 1 ) ∈ ℝ ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → ( ( log ‘ 𝑍 ) + 1 ) ∈ ℝ ) |
35 |
34
|
resqcld |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) + 1 ) ↑ 2 ) ∈ ℝ ) |
36 |
|
3re |
⊢ 3 ∈ ℝ |
37 |
|
readdcl |
⊢ ( ( ( log ‘ 𝑍 ) ∈ ℝ ∧ 3 ∈ ℝ ) → ( ( log ‘ 𝑍 ) + 3 ) ∈ ℝ ) |
38 |
32 36 37
|
sylancl |
⊢ ( 𝜑 → ( ( log ‘ 𝑍 ) + 3 ) ∈ ℝ ) |
39 |
38 32
|
remulcld |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) + 3 ) · ( log ‘ 𝑍 ) ) ∈ ℝ ) |
40 |
31
|
rpred |
⊢ ( 𝜑 → 𝑍 ∈ ℝ ) |
41 |
11
|
simpld |
⊢ ( 𝜑 → 𝑌 ∈ ℝ+ ) |
42 |
40 41
|
rerpdivcld |
⊢ ( 𝜑 → ( 𝑍 / 𝑌 ) ∈ ℝ ) |
43 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
44 |
31
|
rpsqrtcld |
⊢ ( 𝜑 → ( √ ‘ 𝑍 ) ∈ ℝ+ ) |
45 |
44
|
rpred |
⊢ ( 𝜑 → ( √ ‘ 𝑍 ) ∈ ℝ ) |
46 |
|
ere |
⊢ e ∈ ℝ |
47 |
46
|
a1i |
⊢ ( 𝜑 → e ∈ ℝ ) |
48 |
|
1re |
⊢ 1 ∈ ℝ |
49 |
|
1lt2 |
⊢ 1 < 2 |
50 |
|
egt2lt3 |
⊢ ( 2 < e ∧ e < 3 ) |
51 |
50
|
simpli |
⊢ 2 < e |
52 |
48 20 46
|
lttri |
⊢ ( ( 1 < 2 ∧ 2 < e ) → 1 < e ) |
53 |
49 51 52
|
mp2an |
⊢ 1 < e |
54 |
48 46 53
|
ltleii |
⊢ 1 ≤ e |
55 |
54
|
a1i |
⊢ ( 𝜑 → 1 ≤ e ) |
56 |
30
|
simp2d |
⊢ ( 𝜑 → ( 1 < 𝑍 ∧ e ≤ ( √ ‘ 𝑍 ) ∧ ( √ ‘ 𝑍 ) ≤ ( 𝑍 / 𝑌 ) ) ) |
57 |
56
|
simp2d |
⊢ ( 𝜑 → e ≤ ( √ ‘ 𝑍 ) ) |
58 |
43 47 45 55 57
|
letrd |
⊢ ( 𝜑 → 1 ≤ ( √ ‘ 𝑍 ) ) |
59 |
56
|
simp3d |
⊢ ( 𝜑 → ( √ ‘ 𝑍 ) ≤ ( 𝑍 / 𝑌 ) ) |
60 |
43 45 42 58 59
|
letrd |
⊢ ( 𝜑 → 1 ≤ ( 𝑍 / 𝑌 ) ) |
61 |
|
flge1nn |
⊢ ( ( ( 𝑍 / 𝑌 ) ∈ ℝ ∧ 1 ≤ ( 𝑍 / 𝑌 ) ) → ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ∈ ℕ ) |
62 |
42 60 61
|
syl2anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ∈ ℕ ) |
63 |
62
|
nnrpd |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ∈ ℝ+ ) |
64 |
63
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ∈ ℝ ) |
65 |
64 43
|
readdcld |
⊢ ( 𝜑 → ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ∈ ℝ ) |
66 |
65
|
resqcld |
⊢ ( 𝜑 → ( ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ↑ 2 ) ∈ ℝ ) |
67 |
|
logdivbnd |
⊢ ( ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ∈ ℕ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ ( ( ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ↑ 2 ) / 2 ) ) |
68 |
62 67
|
syl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ ( ( ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ↑ 2 ) / 2 ) ) |
69 |
20
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
70 |
|
2pos |
⊢ 0 < 2 |
71 |
70
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
72 |
|
lemuldiv2 |
⊢ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ∧ ( ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ↑ 2 ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ≤ ( ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ↑ 2 ) ↔ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ ( ( ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ↑ 2 ) / 2 ) ) ) |
73 |
27 66 69 71 72
|
syl112anc |
⊢ ( 𝜑 → ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ≤ ( ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ↑ 2 ) ↔ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ≤ ( ( ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ↑ 2 ) / 2 ) ) ) |
74 |
68 73
|
mpbird |
⊢ ( 𝜑 → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ≤ ( ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ↑ 2 ) ) |
75 |
|
reflcl |
⊢ ( ( 𝑍 / 𝑌 ) ∈ ℝ → ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ∈ ℝ ) |
76 |
42 75
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ∈ ℝ ) |
77 |
|
flle |
⊢ ( ( 𝑍 / 𝑌 ) ∈ ℝ → ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ≤ ( 𝑍 / 𝑌 ) ) |
78 |
42 77
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ≤ ( 𝑍 / 𝑌 ) ) |
79 |
11
|
simprd |
⊢ ( 𝜑 → 1 ≤ 𝑌 ) |
80 |
|
1rp |
⊢ 1 ∈ ℝ+ |
81 |
80
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
82 |
81 41 31
|
lediv2d |
⊢ ( 𝜑 → ( 1 ≤ 𝑌 ↔ ( 𝑍 / 𝑌 ) ≤ ( 𝑍 / 1 ) ) ) |
83 |
79 82
|
mpbid |
⊢ ( 𝜑 → ( 𝑍 / 𝑌 ) ≤ ( 𝑍 / 1 ) ) |
84 |
40
|
recnd |
⊢ ( 𝜑 → 𝑍 ∈ ℂ ) |
85 |
84
|
div1d |
⊢ ( 𝜑 → ( 𝑍 / 1 ) = 𝑍 ) |
86 |
83 85
|
breqtrd |
⊢ ( 𝜑 → ( 𝑍 / 𝑌 ) ≤ 𝑍 ) |
87 |
76 42 40 78 86
|
letrd |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ≤ 𝑍 ) |
88 |
63 31
|
logled |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ≤ 𝑍 ↔ ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ≤ ( log ‘ 𝑍 ) ) ) |
89 |
87 88
|
mpbid |
⊢ ( 𝜑 → ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ≤ ( log ‘ 𝑍 ) ) |
90 |
64 32 43 89
|
leadd1dd |
⊢ ( 𝜑 → ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ≤ ( ( log ‘ 𝑍 ) + 1 ) ) |
91 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
92 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
93 |
62
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) |
94 |
|
logleb |
⊢ ( ( 1 ∈ ℝ+ ∧ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ∈ ℝ+ ) → ( 1 ≤ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ↔ ( log ‘ 1 ) ≤ ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) ) |
95 |
80 63 94
|
sylancr |
⊢ ( 𝜑 → ( 1 ≤ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ↔ ( log ‘ 1 ) ≤ ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) ) |
96 |
93 95
|
mpbid |
⊢ ( 𝜑 → ( log ‘ 1 ) ≤ ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) |
97 |
92 96
|
eqbrtrrid |
⊢ ( 𝜑 → 0 ≤ ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) |
98 |
64
|
lep1d |
⊢ ( 𝜑 → ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ≤ ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ) |
99 |
91 64 65 97 98
|
letrd |
⊢ ( 𝜑 → 0 ≤ ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ) |
100 |
91 65 34 99 90
|
letrd |
⊢ ( 𝜑 → 0 ≤ ( ( log ‘ 𝑍 ) + 1 ) ) |
101 |
65 34 99 100
|
le2sqd |
⊢ ( 𝜑 → ( ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ≤ ( ( log ‘ 𝑍 ) + 1 ) ↔ ( ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ↑ 2 ) ≤ ( ( ( log ‘ 𝑍 ) + 1 ) ↑ 2 ) ) ) |
102 |
90 101
|
mpbid |
⊢ ( 𝜑 → ( ( ( log ‘ ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) + 1 ) ↑ 2 ) ≤ ( ( ( log ‘ 𝑍 ) + 1 ) ↑ 2 ) ) |
103 |
29 66 35 74 102
|
letrd |
⊢ ( 𝜑 → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ≤ ( ( ( log ‘ 𝑍 ) + 1 ) ↑ 2 ) ) |
104 |
32
|
resqcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑍 ) ↑ 2 ) ∈ ℝ ) |
105 |
69 32
|
remulcld |
⊢ ( 𝜑 → ( 2 · ( log ‘ 𝑍 ) ) ∈ ℝ ) |
106 |
104 105
|
readdcld |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) ↑ 2 ) + ( 2 · ( log ‘ 𝑍 ) ) ) ∈ ℝ ) |
107 |
|
loge |
⊢ ( log ‘ e ) = 1 |
108 |
44
|
rpge0d |
⊢ ( 𝜑 → 0 ≤ ( √ ‘ 𝑍 ) ) |
109 |
45 45 108 58
|
lemulge12d |
⊢ ( 𝜑 → ( √ ‘ 𝑍 ) ≤ ( ( √ ‘ 𝑍 ) · ( √ ‘ 𝑍 ) ) ) |
110 |
31
|
rprege0d |
⊢ ( 𝜑 → ( 𝑍 ∈ ℝ ∧ 0 ≤ 𝑍 ) ) |
111 |
|
remsqsqrt |
⊢ ( ( 𝑍 ∈ ℝ ∧ 0 ≤ 𝑍 ) → ( ( √ ‘ 𝑍 ) · ( √ ‘ 𝑍 ) ) = 𝑍 ) |
112 |
110 111
|
syl |
⊢ ( 𝜑 → ( ( √ ‘ 𝑍 ) · ( √ ‘ 𝑍 ) ) = 𝑍 ) |
113 |
109 112
|
breqtrd |
⊢ ( 𝜑 → ( √ ‘ 𝑍 ) ≤ 𝑍 ) |
114 |
47 45 40 57 113
|
letrd |
⊢ ( 𝜑 → e ≤ 𝑍 ) |
115 |
|
epr |
⊢ e ∈ ℝ+ |
116 |
|
logleb |
⊢ ( ( e ∈ ℝ+ ∧ 𝑍 ∈ ℝ+ ) → ( e ≤ 𝑍 ↔ ( log ‘ e ) ≤ ( log ‘ 𝑍 ) ) ) |
117 |
115 31 116
|
sylancr |
⊢ ( 𝜑 → ( e ≤ 𝑍 ↔ ( log ‘ e ) ≤ ( log ‘ 𝑍 ) ) ) |
118 |
114 117
|
mpbid |
⊢ ( 𝜑 → ( log ‘ e ) ≤ ( log ‘ 𝑍 ) ) |
119 |
107 118
|
eqbrtrrid |
⊢ ( 𝜑 → 1 ≤ ( log ‘ 𝑍 ) ) |
120 |
43 32 106 119
|
leadd2dd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝑍 ) ↑ 2 ) + ( 2 · ( log ‘ 𝑍 ) ) ) + 1 ) ≤ ( ( ( ( log ‘ 𝑍 ) ↑ 2 ) + ( 2 · ( log ‘ 𝑍 ) ) ) + ( log ‘ 𝑍 ) ) ) |
121 |
32
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝑍 ) ∈ ℂ ) |
122 |
|
binom21 |
⊢ ( ( log ‘ 𝑍 ) ∈ ℂ → ( ( ( log ‘ 𝑍 ) + 1 ) ↑ 2 ) = ( ( ( ( log ‘ 𝑍 ) ↑ 2 ) + ( 2 · ( log ‘ 𝑍 ) ) ) + 1 ) ) |
123 |
121 122
|
syl |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) + 1 ) ↑ 2 ) = ( ( ( ( log ‘ 𝑍 ) ↑ 2 ) + ( 2 · ( log ‘ 𝑍 ) ) ) + 1 ) ) |
124 |
121
|
sqvald |
⊢ ( 𝜑 → ( ( log ‘ 𝑍 ) ↑ 2 ) = ( ( log ‘ 𝑍 ) · ( log ‘ 𝑍 ) ) ) |
125 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
126 |
125
|
oveq1i |
⊢ ( 3 · ( log ‘ 𝑍 ) ) = ( ( 2 + 1 ) · ( log ‘ 𝑍 ) ) |
127 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
128 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
129 |
127 128 121
|
adddird |
⊢ ( 𝜑 → ( ( 2 + 1 ) · ( log ‘ 𝑍 ) ) = ( ( 2 · ( log ‘ 𝑍 ) ) + ( 1 · ( log ‘ 𝑍 ) ) ) ) |
130 |
126 129
|
syl5eq |
⊢ ( 𝜑 → ( 3 · ( log ‘ 𝑍 ) ) = ( ( 2 · ( log ‘ 𝑍 ) ) + ( 1 · ( log ‘ 𝑍 ) ) ) ) |
131 |
121
|
mulid2d |
⊢ ( 𝜑 → ( 1 · ( log ‘ 𝑍 ) ) = ( log ‘ 𝑍 ) ) |
132 |
131
|
oveq2d |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝑍 ) ) + ( 1 · ( log ‘ 𝑍 ) ) ) = ( ( 2 · ( log ‘ 𝑍 ) ) + ( log ‘ 𝑍 ) ) ) |
133 |
130 132
|
eqtr2d |
⊢ ( 𝜑 → ( ( 2 · ( log ‘ 𝑍 ) ) + ( log ‘ 𝑍 ) ) = ( 3 · ( log ‘ 𝑍 ) ) ) |
134 |
124 133
|
oveq12d |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) ↑ 2 ) + ( ( 2 · ( log ‘ 𝑍 ) ) + ( log ‘ 𝑍 ) ) ) = ( ( ( log ‘ 𝑍 ) · ( log ‘ 𝑍 ) ) + ( 3 · ( log ‘ 𝑍 ) ) ) ) |
135 |
121
|
sqcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑍 ) ↑ 2 ) ∈ ℂ ) |
136 |
|
2cn |
⊢ 2 ∈ ℂ |
137 |
|
mulcl |
⊢ ( ( 2 ∈ ℂ ∧ ( log ‘ 𝑍 ) ∈ ℂ ) → ( 2 · ( log ‘ 𝑍 ) ) ∈ ℂ ) |
138 |
136 121 137
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( log ‘ 𝑍 ) ) ∈ ℂ ) |
139 |
135 138 121
|
addassd |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝑍 ) ↑ 2 ) + ( 2 · ( log ‘ 𝑍 ) ) ) + ( log ‘ 𝑍 ) ) = ( ( ( log ‘ 𝑍 ) ↑ 2 ) + ( ( 2 · ( log ‘ 𝑍 ) ) + ( log ‘ 𝑍 ) ) ) ) |
140 |
|
3cn |
⊢ 3 ∈ ℂ |
141 |
140
|
a1i |
⊢ ( 𝜑 → 3 ∈ ℂ ) |
142 |
121 141 121
|
adddird |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) + 3 ) · ( log ‘ 𝑍 ) ) = ( ( ( log ‘ 𝑍 ) · ( log ‘ 𝑍 ) ) + ( 3 · ( log ‘ 𝑍 ) ) ) ) |
143 |
134 139 142
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) + 3 ) · ( log ‘ 𝑍 ) ) = ( ( ( ( log ‘ 𝑍 ) ↑ 2 ) + ( 2 · ( log ‘ 𝑍 ) ) ) + ( log ‘ 𝑍 ) ) ) |
144 |
120 123 143
|
3brtr4d |
⊢ ( 𝜑 → ( ( ( log ‘ 𝑍 ) + 1 ) ↑ 2 ) ≤ ( ( ( log ‘ 𝑍 ) + 3 ) · ( log ‘ 𝑍 ) ) ) |
145 |
29 35 39 103 144
|
letrd |
⊢ ( 𝜑 → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ≤ ( ( ( log ‘ 𝑍 ) + 3 ) · ( log ‘ 𝑍 ) ) ) |
146 |
29 39 7
|
lemul2d |
⊢ ( 𝜑 → ( ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ≤ ( ( ( log ‘ 𝑍 ) + 3 ) · ( log ‘ 𝑍 ) ) ↔ ( 𝑈 · ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) ≤ ( 𝑈 · ( ( ( log ‘ 𝑍 ) + 3 ) · ( log ‘ 𝑍 ) ) ) ) ) |
147 |
145 146
|
mpbid |
⊢ ( 𝜑 → ( 𝑈 · ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) ≤ ( 𝑈 · ( ( ( log ‘ 𝑍 ) + 3 ) · ( log ‘ 𝑍 ) ) ) ) |
148 |
7
|
rpred |
⊢ ( 𝜑 → 𝑈 ∈ ℝ ) |
149 |
148
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) → 𝑈 ∈ ℝ ) |
150 |
149
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) → 𝑈 ∈ ℂ ) |
151 |
25
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) → ( log ‘ 𝑛 ) ∈ ℂ ) |
152 |
24
|
rpcnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) → ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) |
153 |
|
div23 |
⊢ ( ( 𝑈 ∈ ℂ ∧ ( log ‘ 𝑛 ) ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑈 · ( log ‘ 𝑛 ) ) / 𝑛 ) = ( ( 𝑈 / 𝑛 ) · ( log ‘ 𝑛 ) ) ) |
154 |
|
divass |
⊢ ( ( 𝑈 ∈ ℂ ∧ ( log ‘ 𝑛 ) ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑈 · ( log ‘ 𝑛 ) ) / 𝑛 ) = ( 𝑈 · ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) |
155 |
153 154
|
eqtr3d |
⊢ ( ( 𝑈 ∈ ℂ ∧ ( log ‘ 𝑛 ) ∈ ℂ ∧ ( 𝑛 ∈ ℂ ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑈 / 𝑛 ) · ( log ‘ 𝑛 ) ) = ( 𝑈 · ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) |
156 |
150 151 152 155
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) → ( ( 𝑈 / 𝑛 ) · ( log ‘ 𝑛 ) ) = ( 𝑈 · ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) |
157 |
156
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( 𝑈 / 𝑛 ) · ( log ‘ 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( 𝑈 · ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) |
158 |
148
|
recnd |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
159 |
26
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ) → ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
160 |
21 158 159
|
fsummulc2 |
⊢ ( 𝜑 → ( 𝑈 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( 𝑈 · ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) |
161 |
157 160
|
eqtr4d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( 𝑈 / 𝑛 ) · ( log ‘ 𝑛 ) ) = ( 𝑈 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) |
162 |
161
|
oveq2d |
⊢ ( 𝜑 → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( 𝑈 / 𝑛 ) · ( log ‘ 𝑛 ) ) ) = ( 2 · ( 𝑈 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) ) |
163 |
27
|
recnd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
164 |
127 158 163
|
mul12d |
⊢ ( 𝜑 → ( 2 · ( 𝑈 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) = ( 𝑈 · ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) ) |
165 |
162 164
|
eqtrd |
⊢ ( 𝜑 → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( 𝑈 / 𝑛 ) · ( log ‘ 𝑛 ) ) ) = ( 𝑈 · ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( log ‘ 𝑛 ) / 𝑛 ) ) ) ) |
166 |
38
|
recnd |
⊢ ( 𝜑 → ( ( log ‘ 𝑍 ) + 3 ) ∈ ℂ ) |
167 |
158 166 121
|
mulassd |
⊢ ( 𝜑 → ( ( 𝑈 · ( ( log ‘ 𝑍 ) + 3 ) ) · ( log ‘ 𝑍 ) ) = ( 𝑈 · ( ( ( log ‘ 𝑍 ) + 3 ) · ( log ‘ 𝑍 ) ) ) ) |
168 |
147 165 167
|
3brtr4d |
⊢ ( 𝜑 → ( 2 · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑍 / 𝑌 ) ) ) ( ( 𝑈 / 𝑛 ) · ( log ‘ 𝑛 ) ) ) ≤ ( ( 𝑈 · ( ( log ‘ 𝑍 ) + 3 ) ) · ( log ‘ 𝑍 ) ) ) |