Step |
Hyp |
Ref |
Expression |
1 |
|
pntpbnd.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
2 |
|
pntpbnd1.e |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 (,) 1 ) ) |
3 |
|
pntpbnd1.x |
⊢ 𝑋 = ( exp ‘ ( 2 / 𝐸 ) ) |
4 |
|
pntpbnd1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 (,) +∞ ) ) |
5 |
|
pntpbnd1.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
6 |
|
pntpbnd1.2 |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) ) ≤ 𝐴 ) |
7 |
|
pntpbnd1.c |
⊢ 𝐶 = ( 𝐴 + 2 ) |
8 |
|
pntpbnd1.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ) |
9 |
|
pntpbnd1.3 |
⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) |
10 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ∈ Fin ) |
11 |
|
ioossre |
⊢ ( 𝑋 (,) +∞ ) ⊆ ℝ |
12 |
11 4
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
13 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
14 |
|
2re |
⊢ 2 ∈ ℝ |
15 |
|
ioossre |
⊢ ( 0 (,) 1 ) ⊆ ℝ |
16 |
15 2
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
17 |
|
eliooord |
⊢ ( 𝐸 ∈ ( 0 (,) 1 ) → ( 0 < 𝐸 ∧ 𝐸 < 1 ) ) |
18 |
2 17
|
syl |
⊢ ( 𝜑 → ( 0 < 𝐸 ∧ 𝐸 < 1 ) ) |
19 |
18
|
simpld |
⊢ ( 𝜑 → 0 < 𝐸 ) |
20 |
16 19
|
elrpd |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
21 |
|
rerpdivcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) → ( 2 / 𝐸 ) ∈ ℝ ) |
22 |
14 20 21
|
sylancr |
⊢ ( 𝜑 → ( 2 / 𝐸 ) ∈ ℝ ) |
23 |
22
|
reefcld |
⊢ ( 𝜑 → ( exp ‘ ( 2 / 𝐸 ) ) ∈ ℝ ) |
24 |
3 23
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
25 |
|
efgt0 |
⊢ ( ( 2 / 𝐸 ) ∈ ℝ → 0 < ( exp ‘ ( 2 / 𝐸 ) ) ) |
26 |
22 25
|
syl |
⊢ ( 𝜑 → 0 < ( exp ‘ ( 2 / 𝐸 ) ) ) |
27 |
26 3
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑋 ) |
28 |
|
eliooord |
⊢ ( 𝑌 ∈ ( 𝑋 (,) +∞ ) → ( 𝑋 < 𝑌 ∧ 𝑌 < +∞ ) ) |
29 |
4 28
|
syl |
⊢ ( 𝜑 → ( 𝑋 < 𝑌 ∧ 𝑌 < +∞ ) ) |
30 |
29
|
simpld |
⊢ ( 𝜑 → 𝑋 < 𝑌 ) |
31 |
13 24 12 27 30
|
lttrd |
⊢ ( 𝜑 → 0 < 𝑌 ) |
32 |
13 12 31
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝑌 ) |
33 |
|
flge0nn0 |
⊢ ( ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ℕ0 ) |
34 |
12 32 33
|
syl2anc |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ∈ ℕ0 ) |
35 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ 𝑌 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ) |
36 |
34 35
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ) |
37 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
38 |
|
eluznn |
⊢ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) |
39 |
36 37 38
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑛 ∈ ℕ ) |
40 |
39
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑛 ∈ ℝ+ ) |
41 |
1
|
pntrf |
⊢ 𝑅 : ℝ+ ⟶ ℝ |
42 |
41
|
ffvelrni |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
43 |
40 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
44 |
39
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
45 |
39 44
|
nnmulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
46 |
43 45
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
47 |
46
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
48 |
10 47
|
fsumrecl |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
49 |
43
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
50 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑛 ) ) |
51 |
50
|
breq2d |
⊢ ( 𝑖 = 𝑛 → ( 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ 𝑛 ) ) ) |
52 |
51
|
rspccva |
⊢ ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 ≤ ( 𝑅 ‘ 𝑛 ) ) |
53 |
52
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 ≤ ( 𝑅 ‘ 𝑛 ) ) |
54 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
55 |
54
|
nnred |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℝ ) |
56 |
54
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 < ( 𝑛 · ( 𝑛 + 1 ) ) ) |
57 |
|
divge0 |
⊢ ( ( ( ( 𝑅 ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( 𝑅 ‘ 𝑛 ) ) ∧ ( ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℝ ∧ 0 < ( 𝑛 · ( 𝑛 + 1 ) ) ) ) → 0 ≤ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
58 |
49 53 55 56 57
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 ≤ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
59 |
10 47 58
|
fsumge0 |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) → 0 ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
60 |
48 59
|
absidd |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
61 |
47 58
|
absidd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
62 |
61
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
63 |
60 62
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
64 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ∈ Fin ) |
65 |
46
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
66 |
65
|
recnd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
67 |
64 66
|
fsumneg |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = - Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
68 |
43
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
69 |
68
|
renegcld |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → - ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
70 |
50
|
breq1d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ 𝑛 ) ≤ 0 ) ) |
71 |
70
|
rspccva |
⊢ ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ≤ 0 ) |
72 |
71
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ≤ 0 ) |
73 |
68
|
le0neg1d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) ≤ 0 ↔ 0 ≤ - ( 𝑅 ‘ 𝑛 ) ) ) |
74 |
72 73
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 ≤ - ( 𝑅 ‘ 𝑛 ) ) |
75 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
76 |
75
|
nnred |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℝ ) |
77 |
75
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 < ( 𝑛 · ( 𝑛 + 1 ) ) ) |
78 |
|
divge0 |
⊢ ( ( ( - ( 𝑅 ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ - ( 𝑅 ‘ 𝑛 ) ) ∧ ( ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℝ ∧ 0 < ( 𝑛 · ( 𝑛 + 1 ) ) ) ) → 0 ≤ ( - ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
79 |
69 74 76 77 78
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 ≤ ( - ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
80 |
43
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ∈ ℂ ) |
81 |
45
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℂ ) |
82 |
45
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ≠ 0 ) |
83 |
80 81 82
|
divnegd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( - ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
84 |
83
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( - ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
85 |
79 84
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 ≤ - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
86 |
65
|
le0neg1d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ≤ 0 ↔ 0 ≤ - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
87 |
85 86
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ≤ 0 ) |
88 |
65 87
|
absnidd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
89 |
88
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
90 |
64 65
|
fsumrecl |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
91 |
65
|
renegcld |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
92 |
64 91 85
|
fsumge0 |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → 0 ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
93 |
92 67
|
breqtrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → 0 ≤ - Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
94 |
90
|
le0neg1d |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ≤ 0 ↔ 0 ≤ - Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
95 |
93 94
|
mpbird |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ≤ 0 ) |
96 |
90 95
|
absnidd |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = - Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
97 |
67 89 96
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
98 |
|
2rp |
⊢ 2 ∈ ℝ+ |
99 |
|
rpaddcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+ ) → ( 𝐴 + 2 ) ∈ ℝ+ ) |
100 |
5 98 99
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 + 2 ) ∈ ℝ+ ) |
101 |
7 100
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
102 |
101 20
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐶 / 𝐸 ) ∈ ℝ+ ) |
103 |
102
|
rpred |
⊢ ( 𝜑 → ( 𝐶 / 𝐸 ) ∈ ℝ ) |
104 |
103
|
reefcld |
⊢ ( 𝜑 → ( exp ‘ ( 𝐶 / 𝐸 ) ) ∈ ℝ ) |
105 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
106 |
|
icossre |
⊢ ( ( ( exp ‘ ( 𝐶 / 𝐸 ) ) ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ⊆ ℝ ) |
107 |
104 105 106
|
sylancl |
⊢ ( 𝜑 → ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ⊆ ℝ ) |
108 |
107 8
|
sseldd |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
109 |
108 12
|
remulcld |
⊢ ( 𝜑 → ( 𝐾 · 𝑌 ) ∈ ℝ ) |
110 |
12
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
111 |
110
|
mulid2d |
⊢ ( 𝜑 → ( 1 · 𝑌 ) = 𝑌 ) |
112 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
113 |
|
efgt1 |
⊢ ( ( 𝐶 / 𝐸 ) ∈ ℝ+ → 1 < ( exp ‘ ( 𝐶 / 𝐸 ) ) ) |
114 |
102 113
|
syl |
⊢ ( 𝜑 → 1 < ( exp ‘ ( 𝐶 / 𝐸 ) ) ) |
115 |
|
elicopnf |
⊢ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) ∈ ℝ → ( 𝐾 ∈ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ↔ ( 𝐾 ∈ ℝ ∧ ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ 𝐾 ) ) ) |
116 |
104 115
|
syl |
⊢ ( 𝜑 → ( 𝐾 ∈ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ↔ ( 𝐾 ∈ ℝ ∧ ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ 𝐾 ) ) ) |
117 |
116
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ) → ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ 𝐾 ) |
118 |
8 117
|
mpdan |
⊢ ( 𝜑 → ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ 𝐾 ) |
119 |
112 104 108 114 118
|
ltletrd |
⊢ ( 𝜑 → 1 < 𝐾 ) |
120 |
|
ltmul1 |
⊢ ( ( 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ ( 𝑌 ∈ ℝ ∧ 0 < 𝑌 ) ) → ( 1 < 𝐾 ↔ ( 1 · 𝑌 ) < ( 𝐾 · 𝑌 ) ) ) |
121 |
112 108 12 31 120
|
syl112anc |
⊢ ( 𝜑 → ( 1 < 𝐾 ↔ ( 1 · 𝑌 ) < ( 𝐾 · 𝑌 ) ) ) |
122 |
119 121
|
mpbid |
⊢ ( 𝜑 → ( 1 · 𝑌 ) < ( 𝐾 · 𝑌 ) ) |
123 |
111 122
|
eqbrtrrd |
⊢ ( 𝜑 → 𝑌 < ( 𝐾 · 𝑌 ) ) |
124 |
12 109 123
|
ltled |
⊢ ( 𝜑 → 𝑌 ≤ ( 𝐾 · 𝑌 ) ) |
125 |
|
flword2 |
⊢ ( ( 𝑌 ∈ ℝ ∧ ( 𝐾 · 𝑌 ) ∈ ℝ ∧ 𝑌 ≤ ( 𝐾 · 𝑌 ) ) → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) ) ) |
126 |
12 109 124 125
|
syl3anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) ) ) |
127 |
109
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℤ ) |
128 |
|
uzid |
⊢ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℤ → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
129 |
127 128
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
130 |
|
elfzuzb |
⊢ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ↔ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) ) ∧ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) |
131 |
126 129 130
|
sylanbrc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
132 |
|
oveq2 |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑌 ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) |
133 |
132
|
raleqdv |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑌 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
134 |
132
|
raleqdv |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑌 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
135 |
133 134
|
orbi12d |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑌 ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
136 |
135
|
imbi2d |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑌 ) → ( ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ↔ ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) ) |
137 |
|
oveq2 |
⊢ ( 𝑥 = 𝑚 → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ) |
138 |
137
|
raleqdv |
⊢ ( 𝑥 = 𝑚 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
139 |
137
|
raleqdv |
⊢ ( 𝑥 = 𝑚 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
140 |
138 139
|
orbi12d |
⊢ ( 𝑥 = 𝑚 → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
141 |
140
|
imbi2d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ↔ ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) ) |
142 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ) |
143 |
142
|
raleqdv |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
144 |
142
|
raleqdv |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
145 |
143 144
|
orbi12d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
146 |
145
|
imbi2d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ↔ ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) ) |
147 |
|
oveq2 |
⊢ ( 𝑥 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
148 |
147
|
raleqdv |
⊢ ( 𝑥 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
149 |
147
|
raleqdv |
⊢ ( 𝑥 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
150 |
148 149
|
orbi12d |
⊢ ( 𝑥 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
151 |
150
|
imbi2d |
⊢ ( 𝑥 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ↔ ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) ) |
152 |
|
elfzle3 |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) |
153 |
|
elfzel2 |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ⌊ ‘ 𝑌 ) ∈ ℤ ) |
154 |
153
|
zred |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ⌊ ‘ 𝑌 ) ∈ ℝ ) |
155 |
154
|
ltp1d |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ⌊ ‘ 𝑌 ) < ( ( ⌊ ‘ 𝑌 ) + 1 ) ) |
156 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝑌 ) ∈ ℝ → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℝ ) |
157 |
154 156
|
syl |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℝ ) |
158 |
154 157
|
ltnled |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ( ⌊ ‘ 𝑌 ) < ( ( ⌊ ‘ 𝑌 ) + 1 ) ↔ ¬ ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) ) |
159 |
155 158
|
mpbid |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ¬ ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) |
160 |
152 159
|
pm2.21dd |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( 𝑅 ‘ 𝑖 ) ≤ 0 ) |
161 |
160
|
rgen |
⊢ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 |
162 |
161
|
olci |
⊢ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) |
163 |
162
|
2a1i |
⊢ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) ) → ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
164 |
|
elfzofz |
⊢ ( 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
165 |
|
elfzp12 |
⊢ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) ) → ( 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ↔ ( 𝑚 = ( ⌊ ‘ 𝑌 ) ∨ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) ) |
166 |
126 165
|
syl |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ↔ ( 𝑚 = ( ⌊ ‘ 𝑌 ) ∨ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) ) |
167 |
164 166
|
syl5ib |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → ( 𝑚 = ( ⌊ ‘ 𝑌 ) ∨ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) ) |
168 |
167
|
imp |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑚 = ( ⌊ ‘ 𝑌 ) ∨ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) |
169 |
36
|
nnrpd |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℝ+ ) |
170 |
41
|
ffvelrni |
⊢ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℝ+ → ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ∈ ℝ ) |
171 |
169 170
|
syl |
⊢ ( 𝜑 → ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ∈ ℝ ) |
172 |
13 171
|
letrid |
⊢ ( 𝜑 → ( 0 ≤ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ∨ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ 0 ) ) |
173 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( 0 ≤ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ∨ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ 0 ) ) |
174 |
|
oveq1 |
⊢ ( 𝑚 = ( ⌊ ‘ 𝑌 ) → ( 𝑚 + 1 ) = ( ( ⌊ ‘ 𝑌 ) + 1 ) ) |
175 |
174
|
oveq2d |
⊢ ( 𝑚 = ( ⌊ ‘ 𝑌 ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
176 |
12
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ∈ ℤ ) |
177 |
176
|
peano2zd |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℤ ) |
178 |
|
fzsn |
⊢ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℤ → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) = { ( ( ⌊ ‘ 𝑌 ) + 1 ) } ) |
179 |
177 178
|
syl |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) = { ( ( ⌊ ‘ 𝑌 ) + 1 ) } ) |
180 |
175 179
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) = { ( ( ⌊ ‘ 𝑌 ) + 1 ) } ) |
181 |
180
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ { ( ( ⌊ ‘ 𝑌 ) + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
182 |
|
ovex |
⊢ ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ V |
183 |
|
fveq2 |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
184 |
183
|
breq2d |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ) |
185 |
182 184
|
ralsn |
⊢ ( ∀ 𝑖 ∈ { ( ( ⌊ ‘ 𝑌 ) + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
186 |
181 185
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ) |
187 |
180
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ∀ 𝑖 ∈ { ( ( ⌊ ‘ 𝑌 ) + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
188 |
183
|
breq1d |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ 0 ) ) |
189 |
182 188
|
ralsn |
⊢ ( ∀ 𝑖 ∈ { ( ( ⌊ ‘ 𝑌 ) + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ 0 ) |
190 |
187 189
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ 0 ) ) |
191 |
186 190
|
orbi12d |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ↔ ( 0 ≤ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ∨ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ 0 ) ) ) |
192 |
173 191
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
193 |
192
|
a1d |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
194 |
|
elfzuz |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
195 |
194
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
196 |
|
eluzfz2 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) → 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ) |
197 |
195 196
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ) |
198 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑚 ) ) |
199 |
198
|
breq2d |
⊢ ( 𝑖 = 𝑚 → ( 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ 𝑚 ) ) ) |
200 |
199
|
rspcv |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) → 0 ≤ ( 𝑅 ‘ 𝑚 ) ) ) |
201 |
197 200
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) → 0 ≤ ( 𝑅 ‘ 𝑚 ) ) ) |
202 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ¬ ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) |
203 |
|
eluznn |
⊢ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) → 𝑚 ∈ ℕ ) |
204 |
36 194 203
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑚 ∈ ℕ ) |
205 |
204
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → 𝑚 ∈ ℕ ) |
206 |
|
elfzle1 |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ 𝑚 ) |
207 |
206
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ 𝑚 ) |
208 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑚 ∈ ℤ ) |
209 |
|
zltp1le |
⊢ ( ( ( ⌊ ‘ 𝑌 ) ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( ( ⌊ ‘ 𝑌 ) < 𝑚 ↔ ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ 𝑚 ) ) |
210 |
176 208 209
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ⌊ ‘ 𝑌 ) < 𝑚 ↔ ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ 𝑚 ) ) |
211 |
207 210
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ⌊ ‘ 𝑌 ) < 𝑚 ) |
212 |
|
fllt |
⊢ ( ( 𝑌 ∈ ℝ ∧ 𝑚 ∈ ℤ ) → ( 𝑌 < 𝑚 ↔ ( ⌊ ‘ 𝑌 ) < 𝑚 ) ) |
213 |
12 208 212
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑌 < 𝑚 ↔ ( ⌊ ‘ 𝑌 ) < 𝑚 ) ) |
214 |
211 213
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑌 < 𝑚 ) |
215 |
|
elfzle2 |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑚 ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) |
216 |
215
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑚 ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) |
217 |
|
flge |
⊢ ( ( ( 𝐾 · 𝑌 ) ∈ ℝ ∧ 𝑚 ∈ ℤ ) → ( 𝑚 ≤ ( 𝐾 · 𝑌 ) ↔ 𝑚 ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
218 |
109 208 217
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑚 ≤ ( 𝐾 · 𝑌 ) ↔ 𝑚 ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
219 |
216 218
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑚 ≤ ( 𝐾 · 𝑌 ) ) |
220 |
214 219
|
jca |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑌 < 𝑚 ∧ 𝑚 ≤ ( 𝐾 · 𝑌 ) ) ) |
221 |
220
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → ( 𝑌 < 𝑚 ∧ 𝑚 ≤ ( 𝐾 · 𝑌 ) ) ) |
222 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → 𝐸 ∈ ( 0 (,) 1 ) ) |
223 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → 𝑌 ∈ ( 𝑋 (,) +∞ ) ) |
224 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) |
225 |
1 222 3 223 205 221 224
|
pntpbnd1a |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑚 ) / 𝑚 ) ) ≤ 𝐸 ) |
226 |
|
breq2 |
⊢ ( 𝑦 = 𝑚 → ( 𝑌 < 𝑦 ↔ 𝑌 < 𝑚 ) ) |
227 |
|
breq1 |
⊢ ( 𝑦 = 𝑚 → ( 𝑦 ≤ ( 𝐾 · 𝑌 ) ↔ 𝑚 ≤ ( 𝐾 · 𝑌 ) ) ) |
228 |
226 227
|
anbi12d |
⊢ ( 𝑦 = 𝑚 → ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ↔ ( 𝑌 < 𝑚 ∧ 𝑚 ≤ ( 𝐾 · 𝑌 ) ) ) ) |
229 |
|
fveq2 |
⊢ ( 𝑦 = 𝑚 → ( 𝑅 ‘ 𝑦 ) = ( 𝑅 ‘ 𝑚 ) ) |
230 |
|
id |
⊢ ( 𝑦 = 𝑚 → 𝑦 = 𝑚 ) |
231 |
229 230
|
oveq12d |
⊢ ( 𝑦 = 𝑚 → ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) = ( ( 𝑅 ‘ 𝑚 ) / 𝑚 ) ) |
232 |
231
|
fveq2d |
⊢ ( 𝑦 = 𝑚 → ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) = ( abs ‘ ( ( 𝑅 ‘ 𝑚 ) / 𝑚 ) ) ) |
233 |
232
|
breq1d |
⊢ ( 𝑦 = 𝑚 → ( ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ↔ ( abs ‘ ( ( 𝑅 ‘ 𝑚 ) / 𝑚 ) ) ≤ 𝐸 ) ) |
234 |
228 233
|
anbi12d |
⊢ ( 𝑦 = 𝑚 → ( ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ↔ ( ( 𝑌 < 𝑚 ∧ 𝑚 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑚 ) / 𝑚 ) ) ≤ 𝐸 ) ) ) |
235 |
234
|
rspcev |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( ( 𝑌 < 𝑚 ∧ 𝑚 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑚 ) / 𝑚 ) ) ≤ 𝐸 ) ) → ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) |
236 |
205 221 225 235
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) |
237 |
202 236
|
mtand |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ¬ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) |
238 |
237
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ 0 ≤ ( 𝑅 ‘ 𝑚 ) ) → ¬ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) |
239 |
204
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑚 ∈ ℝ+ ) |
240 |
41
|
ffvelrni |
⊢ ( 𝑚 ∈ ℝ+ → ( 𝑅 ‘ 𝑚 ) ∈ ℝ ) |
241 |
239 240
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑚 ) ∈ ℝ ) |
242 |
241
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( 𝑅 ‘ 𝑚 ) ∈ ℝ ) |
243 |
242
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( 𝑅 ‘ 𝑚 ) ∈ ℂ ) |
244 |
243
|
subid1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( ( 𝑅 ‘ 𝑚 ) − 0 ) = ( 𝑅 ‘ 𝑚 ) ) |
245 |
204
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
246 |
245
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑚 + 1 ) ∈ ℝ+ ) |
247 |
41
|
ffvelrni |
⊢ ( ( 𝑚 + 1 ) ∈ ℝ+ → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) |
248 |
246 247
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) |
249 |
248
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) |
250 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → 0 ∈ ℝ ) |
251 |
|
0re |
⊢ 0 ∈ ℝ |
252 |
|
letric |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) → ( 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∨ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) |
253 |
251 248 252
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∨ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) |
254 |
253
|
ord |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) |
255 |
254
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) |
256 |
255
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) |
257 |
249 250 242 256
|
lesub2dd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( ( 𝑅 ‘ 𝑚 ) − 0 ) ≤ ( ( 𝑅 ‘ 𝑚 ) − ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
258 |
244 257
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( 𝑅 ‘ 𝑚 ) ≤ ( ( 𝑅 ‘ 𝑚 ) − ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
259 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → 0 ≤ ( 𝑅 ‘ 𝑚 ) ) |
260 |
242 259
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) = ( 𝑅 ‘ 𝑚 ) ) |
261 |
249 250 242 256 259
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝑅 ‘ 𝑚 ) ) |
262 |
249 242 261
|
abssuble0d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) = ( ( 𝑅 ‘ 𝑚 ) − ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
263 |
258 260 262
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) |
264 |
263
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ 0 ≤ ( 𝑅 ‘ 𝑚 ) ) → ( ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) ) |
265 |
238 264
|
mt3d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ 0 ≤ ( 𝑅 ‘ 𝑚 ) ) → 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) |
266 |
265
|
ex |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 0 ≤ ( 𝑅 ‘ 𝑚 ) → 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
267 |
201 266
|
syld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) → 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
268 |
|
ovex |
⊢ ( 𝑚 + 1 ) ∈ V |
269 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) |
270 |
269
|
breq2d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
271 |
268 270
|
ralsn |
⊢ ( ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) |
272 |
267 271
|
syl6ibr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) → ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
273 |
272
|
ancld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) ) |
274 |
|
fzsuc |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) = ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ) |
275 |
195 274
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) = ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ) |
276 |
275
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
277 |
|
ralunb |
⊢ ( ∀ 𝑖 ∈ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
278 |
276 277
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) ) |
279 |
273 278
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) → ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
280 |
198
|
breq1d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ 𝑚 ) ≤ 0 ) ) |
281 |
280
|
rspcv |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 → ( 𝑅 ‘ 𝑚 ) ≤ 0 ) ) |
282 |
197 281
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 → ( 𝑅 ‘ 𝑚 ) ≤ 0 ) ) |
283 |
237
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 𝑅 ‘ 𝑚 ) ≤ 0 ) → ¬ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) |
284 |
254
|
con1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 → 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
285 |
284
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) → 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) |
286 |
285
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) |
287 |
241
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 𝑅 ‘ 𝑚 ) ∈ ℝ ) |
288 |
287
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → - ( 𝑅 ‘ 𝑚 ) ∈ ℝ ) |
289 |
248
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) |
290 |
288 289
|
addge02d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ↔ - ( 𝑅 ‘ 𝑚 ) ≤ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) + - ( 𝑅 ‘ 𝑚 ) ) ) ) |
291 |
286 290
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → - ( 𝑅 ‘ 𝑚 ) ≤ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) + - ( 𝑅 ‘ 𝑚 ) ) ) |
292 |
289
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∈ ℂ ) |
293 |
287
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 𝑅 ‘ 𝑚 ) ∈ ℂ ) |
294 |
292 293
|
negsubd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) + - ( 𝑅 ‘ 𝑚 ) ) = ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) |
295 |
291 294
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → - ( 𝑅 ‘ 𝑚 ) ≤ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) |
296 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 𝑅 ‘ 𝑚 ) ≤ 0 ) |
297 |
287 296
|
absnidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) = - ( 𝑅 ‘ 𝑚 ) ) |
298 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → 0 ∈ ℝ ) |
299 |
287 298 289 296 286
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 𝑅 ‘ 𝑚 ) ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) |
300 |
287 289 299
|
abssubge0d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) = ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) |
301 |
295 297 300
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) |
302 |
301
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 𝑅 ‘ 𝑚 ) ≤ 0 ) → ( ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) ) |
303 |
283 302
|
mt3d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 𝑅 ‘ 𝑚 ) ≤ 0 ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) |
304 |
303
|
ex |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑚 ) ≤ 0 → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) |
305 |
282 304
|
syld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) |
306 |
269
|
breq1d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) |
307 |
268 306
|
ralsn |
⊢ ( ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) |
308 |
305 307
|
syl6ibr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 → ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
309 |
308
|
ancld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ∧ ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
310 |
275
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ∀ 𝑖 ∈ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
311 |
|
ralunb |
⊢ ( ∀ 𝑖 ∈ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ∧ ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
312 |
310 311
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ∧ ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
313 |
309 312
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 → ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
314 |
279 313
|
orim12d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
315 |
193 314
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑚 = ( ⌊ ‘ 𝑌 ) ∨ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
316 |
168 315
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
317 |
316
|
expcom |
⊢ ( 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → ( 𝜑 → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) ) |
318 |
317
|
a2d |
⊢ ( 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → ( ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) → ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) ) |
319 |
136 141 146 151 163 318
|
fzind2 |
⊢ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
320 |
131 319
|
mpcom |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
321 |
63 97 320
|
mpjaodan |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
322 |
|
fveq2 |
⊢ ( 𝑦 = 𝑛 → ( 𝑅 ‘ 𝑦 ) = ( 𝑅 ‘ 𝑛 ) ) |
323 |
|
id |
⊢ ( 𝑦 = 𝑛 → 𝑦 = 𝑛 ) |
324 |
|
oveq1 |
⊢ ( 𝑦 = 𝑛 → ( 𝑦 + 1 ) = ( 𝑛 + 1 ) ) |
325 |
323 324
|
oveq12d |
⊢ ( 𝑦 = 𝑛 → ( 𝑦 · ( 𝑦 + 1 ) ) = ( 𝑛 · ( 𝑛 + 1 ) ) ) |
326 |
322 325
|
oveq12d |
⊢ ( 𝑦 = 𝑛 → ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) = ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
327 |
326
|
cbvsumv |
⊢ Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) = Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) |
328 |
|
oveq1 |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( 𝑖 ... 𝑗 ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ) |
329 |
328
|
sumeq1d |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
330 |
327 329
|
eqtrid |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
331 |
330
|
fveq2d |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( abs ‘ Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) ) = ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
332 |
331
|
breq1d |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( ( abs ‘ Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) ) ≤ 𝐴 ↔ ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ) ) |
333 |
|
oveq2 |
⊢ ( 𝑗 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
334 |
333
|
sumeq1d |
⊢ ( 𝑗 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
335 |
334
|
fveq2d |
⊢ ( 𝑗 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
336 |
335
|
breq1d |
⊢ ( 𝑗 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ↔ ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ) ) |
337 |
332 336
|
rspc2va |
⊢ ( ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ∧ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℤ ) ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) ) ≤ 𝐴 ) → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ) |
338 |
36 127 6 337
|
syl21anc |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ) |
339 |
321 338
|
eqbrtrrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ) |