| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntpbnd.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
| 2 |
|
pntpbnd1.e |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 (,) 1 ) ) |
| 3 |
|
pntpbnd1.x |
⊢ 𝑋 = ( exp ‘ ( 2 / 𝐸 ) ) |
| 4 |
|
pntpbnd1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 (,) +∞ ) ) |
| 5 |
|
pntpbnd1.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 6 |
|
pntpbnd1.2 |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) ) ≤ 𝐴 ) |
| 7 |
|
pntpbnd1.c |
⊢ 𝐶 = ( 𝐴 + 2 ) |
| 8 |
|
pntpbnd1.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ) |
| 9 |
|
pntpbnd1.3 |
⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) |
| 10 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ∈ Fin ) |
| 11 |
|
ioossre |
⊢ ( 𝑋 (,) +∞ ) ⊆ ℝ |
| 12 |
11 4
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 13 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 14 |
|
2re |
⊢ 2 ∈ ℝ |
| 15 |
|
ioossre |
⊢ ( 0 (,) 1 ) ⊆ ℝ |
| 16 |
15 2
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 17 |
|
eliooord |
⊢ ( 𝐸 ∈ ( 0 (,) 1 ) → ( 0 < 𝐸 ∧ 𝐸 < 1 ) ) |
| 18 |
2 17
|
syl |
⊢ ( 𝜑 → ( 0 < 𝐸 ∧ 𝐸 < 1 ) ) |
| 19 |
18
|
simpld |
⊢ ( 𝜑 → 0 < 𝐸 ) |
| 20 |
16 19
|
elrpd |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 21 |
|
rerpdivcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) → ( 2 / 𝐸 ) ∈ ℝ ) |
| 22 |
14 20 21
|
sylancr |
⊢ ( 𝜑 → ( 2 / 𝐸 ) ∈ ℝ ) |
| 23 |
22
|
reefcld |
⊢ ( 𝜑 → ( exp ‘ ( 2 / 𝐸 ) ) ∈ ℝ ) |
| 24 |
3 23
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 25 |
|
efgt0 |
⊢ ( ( 2 / 𝐸 ) ∈ ℝ → 0 < ( exp ‘ ( 2 / 𝐸 ) ) ) |
| 26 |
22 25
|
syl |
⊢ ( 𝜑 → 0 < ( exp ‘ ( 2 / 𝐸 ) ) ) |
| 27 |
26 3
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑋 ) |
| 28 |
|
eliooord |
⊢ ( 𝑌 ∈ ( 𝑋 (,) +∞ ) → ( 𝑋 < 𝑌 ∧ 𝑌 < +∞ ) ) |
| 29 |
4 28
|
syl |
⊢ ( 𝜑 → ( 𝑋 < 𝑌 ∧ 𝑌 < +∞ ) ) |
| 30 |
29
|
simpld |
⊢ ( 𝜑 → 𝑋 < 𝑌 ) |
| 31 |
13 24 12 27 30
|
lttrd |
⊢ ( 𝜑 → 0 < 𝑌 ) |
| 32 |
13 12 31
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝑌 ) |
| 33 |
|
flge0nn0 |
⊢ ( ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ℕ0 ) |
| 34 |
12 32 33
|
syl2anc |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ∈ ℕ0 ) |
| 35 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ 𝑌 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ) |
| 36 |
34 35
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ) |
| 37 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
| 38 |
|
eluznn |
⊢ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) |
| 39 |
36 37 38
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑛 ∈ ℕ ) |
| 40 |
39
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑛 ∈ ℝ+ ) |
| 41 |
1
|
pntrf |
⊢ 𝑅 : ℝ+ ⟶ ℝ |
| 42 |
41
|
ffvelcdmi |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 43 |
40 42
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 44 |
39
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 45 |
39 44
|
nnmulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 46 |
43 45
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 47 |
46
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 48 |
10 47
|
fsumrecl |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 49 |
43
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 50 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑛 ) ) |
| 51 |
50
|
breq2d |
⊢ ( 𝑖 = 𝑛 → ( 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ 𝑛 ) ) ) |
| 52 |
51
|
rspccva |
⊢ ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 ≤ ( 𝑅 ‘ 𝑛 ) ) |
| 53 |
52
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 ≤ ( 𝑅 ‘ 𝑛 ) ) |
| 54 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 55 |
54
|
nnred |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 56 |
54
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 < ( 𝑛 · ( 𝑛 + 1 ) ) ) |
| 57 |
|
divge0 |
⊢ ( ( ( ( 𝑅 ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ ( 𝑅 ‘ 𝑛 ) ) ∧ ( ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℝ ∧ 0 < ( 𝑛 · ( 𝑛 + 1 ) ) ) ) → 0 ≤ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 58 |
49 53 55 56 57
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 ≤ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 59 |
10 47 58
|
fsumge0 |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) → 0 ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 60 |
48 59
|
absidd |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 61 |
47 58
|
absidd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 62 |
61
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 63 |
60 62
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 64 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ∈ Fin ) |
| 65 |
46
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 66 |
65
|
recnd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 67 |
64 66
|
fsumneg |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = - Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 68 |
43
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 69 |
68
|
renegcld |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → - ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 70 |
50
|
breq1d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ 𝑛 ) ≤ 0 ) ) |
| 71 |
70
|
rspccva |
⊢ ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ≤ 0 ) |
| 72 |
71
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ≤ 0 ) |
| 73 |
68
|
le0neg1d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) ≤ 0 ↔ 0 ≤ - ( 𝑅 ‘ 𝑛 ) ) ) |
| 74 |
72 73
|
mpbid |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 ≤ - ( 𝑅 ‘ 𝑛 ) ) |
| 75 |
45
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 76 |
75
|
nnred |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 77 |
75
|
nngt0d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 < ( 𝑛 · ( 𝑛 + 1 ) ) ) |
| 78 |
|
divge0 |
⊢ ( ( ( - ( 𝑅 ‘ 𝑛 ) ∈ ℝ ∧ 0 ≤ - ( 𝑅 ‘ 𝑛 ) ) ∧ ( ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℝ ∧ 0 < ( 𝑛 · ( 𝑛 + 1 ) ) ) ) → 0 ≤ ( - ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 79 |
69 74 76 77 78
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 ≤ ( - ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 80 |
43
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ∈ ℂ ) |
| 81 |
45
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 82 |
45
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ≠ 0 ) |
| 83 |
80 81 82
|
divnegd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( - ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 84 |
83
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( - ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 85 |
79 84
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 0 ≤ - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 86 |
65
|
le0neg1d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ≤ 0 ↔ 0 ≤ - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 87 |
85 86
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ≤ 0 ) |
| 88 |
65 87
|
absnidd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 89 |
88
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 90 |
64 65
|
fsumrecl |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 91 |
65
|
renegcld |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 92 |
64 91 85
|
fsumge0 |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → 0 ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 93 |
92 67
|
breqtrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → 0 ≤ - Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 94 |
90
|
le0neg1d |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ≤ 0 ↔ 0 ≤ - Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 95 |
93 94
|
mpbird |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ≤ 0 ) |
| 96 |
90 95
|
absnidd |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = - Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 97 |
67 89 96
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 98 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 99 |
|
rpaddcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+ ) → ( 𝐴 + 2 ) ∈ ℝ+ ) |
| 100 |
5 98 99
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 + 2 ) ∈ ℝ+ ) |
| 101 |
7 100
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 102 |
101 20
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐶 / 𝐸 ) ∈ ℝ+ ) |
| 103 |
102
|
rpred |
⊢ ( 𝜑 → ( 𝐶 / 𝐸 ) ∈ ℝ ) |
| 104 |
103
|
reefcld |
⊢ ( 𝜑 → ( exp ‘ ( 𝐶 / 𝐸 ) ) ∈ ℝ ) |
| 105 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 106 |
|
icossre |
⊢ ( ( ( exp ‘ ( 𝐶 / 𝐸 ) ) ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ⊆ ℝ ) |
| 107 |
104 105 106
|
sylancl |
⊢ ( 𝜑 → ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ⊆ ℝ ) |
| 108 |
107 8
|
sseldd |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 109 |
108 12
|
remulcld |
⊢ ( 𝜑 → ( 𝐾 · 𝑌 ) ∈ ℝ ) |
| 110 |
12
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 111 |
110
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝑌 ) = 𝑌 ) |
| 112 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 113 |
|
efgt1 |
⊢ ( ( 𝐶 / 𝐸 ) ∈ ℝ+ → 1 < ( exp ‘ ( 𝐶 / 𝐸 ) ) ) |
| 114 |
102 113
|
syl |
⊢ ( 𝜑 → 1 < ( exp ‘ ( 𝐶 / 𝐸 ) ) ) |
| 115 |
|
elicopnf |
⊢ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) ∈ ℝ → ( 𝐾 ∈ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ↔ ( 𝐾 ∈ ℝ ∧ ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ 𝐾 ) ) ) |
| 116 |
104 115
|
syl |
⊢ ( 𝜑 → ( 𝐾 ∈ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ↔ ( 𝐾 ∈ ℝ ∧ ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ 𝐾 ) ) ) |
| 117 |
116
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ) → ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ 𝐾 ) |
| 118 |
8 117
|
mpdan |
⊢ ( 𝜑 → ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ 𝐾 ) |
| 119 |
112 104 108 114 118
|
ltletrd |
⊢ ( 𝜑 → 1 < 𝐾 ) |
| 120 |
|
ltmul1 |
⊢ ( ( 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ ( 𝑌 ∈ ℝ ∧ 0 < 𝑌 ) ) → ( 1 < 𝐾 ↔ ( 1 · 𝑌 ) < ( 𝐾 · 𝑌 ) ) ) |
| 121 |
112 108 12 31 120
|
syl112anc |
⊢ ( 𝜑 → ( 1 < 𝐾 ↔ ( 1 · 𝑌 ) < ( 𝐾 · 𝑌 ) ) ) |
| 122 |
119 121
|
mpbid |
⊢ ( 𝜑 → ( 1 · 𝑌 ) < ( 𝐾 · 𝑌 ) ) |
| 123 |
111 122
|
eqbrtrrd |
⊢ ( 𝜑 → 𝑌 < ( 𝐾 · 𝑌 ) ) |
| 124 |
12 109 123
|
ltled |
⊢ ( 𝜑 → 𝑌 ≤ ( 𝐾 · 𝑌 ) ) |
| 125 |
|
flword2 |
⊢ ( ( 𝑌 ∈ ℝ ∧ ( 𝐾 · 𝑌 ) ∈ ℝ ∧ 𝑌 ≤ ( 𝐾 · 𝑌 ) ) → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) ) ) |
| 126 |
12 109 124 125
|
syl3anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) ) ) |
| 127 |
109
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℤ ) |
| 128 |
|
uzid |
⊢ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℤ → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 129 |
127 128
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 130 |
|
elfzuzb |
⊢ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ↔ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) ) ∧ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) |
| 131 |
126 129 130
|
sylanbrc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 132 |
|
oveq2 |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑌 ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ) |
| 133 |
132
|
raleqdv |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑌 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
| 134 |
132
|
raleqdv |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑌 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
| 135 |
133 134
|
orbi12d |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑌 ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 136 |
135
|
imbi2d |
⊢ ( 𝑥 = ( ⌊ ‘ 𝑌 ) → ( ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ↔ ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) ) |
| 137 |
|
oveq2 |
⊢ ( 𝑥 = 𝑚 → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ) |
| 138 |
137
|
raleqdv |
⊢ ( 𝑥 = 𝑚 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
| 139 |
137
|
raleqdv |
⊢ ( 𝑥 = 𝑚 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
| 140 |
138 139
|
orbi12d |
⊢ ( 𝑥 = 𝑚 → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 141 |
140
|
imbi2d |
⊢ ( 𝑥 = 𝑚 → ( ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ↔ ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) ) |
| 142 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ) |
| 143 |
142
|
raleqdv |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
| 144 |
142
|
raleqdv |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
| 145 |
143 144
|
orbi12d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 146 |
145
|
imbi2d |
⊢ ( 𝑥 = ( 𝑚 + 1 ) → ( ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ↔ ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) ) |
| 147 |
|
oveq2 |
⊢ ( 𝑥 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 148 |
147
|
raleqdv |
⊢ ( 𝑥 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
| 149 |
147
|
raleqdv |
⊢ ( 𝑥 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
| 150 |
148 149
|
orbi12d |
⊢ ( 𝑥 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 151 |
150
|
imbi2d |
⊢ ( 𝑥 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑥 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ↔ ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) ) |
| 152 |
|
elfzle3 |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) |
| 153 |
|
elfzel2 |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ⌊ ‘ 𝑌 ) ∈ ℤ ) |
| 154 |
153
|
zred |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ⌊ ‘ 𝑌 ) ∈ ℝ ) |
| 155 |
154
|
ltp1d |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ⌊ ‘ 𝑌 ) < ( ( ⌊ ‘ 𝑌 ) + 1 ) ) |
| 156 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝑌 ) ∈ ℝ → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℝ ) |
| 157 |
154 156
|
syl |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℝ ) |
| 158 |
154 157
|
ltnled |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( ( ⌊ ‘ 𝑌 ) < ( ( ⌊ ‘ 𝑌 ) + 1 ) ↔ ¬ ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) ) |
| 159 |
155 158
|
mpbid |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ¬ ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ ( ⌊ ‘ 𝑌 ) ) |
| 160 |
152 159
|
pm2.21dd |
⊢ ( 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) → ( 𝑅 ‘ 𝑖 ) ≤ 0 ) |
| 161 |
160
|
rgen |
⊢ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 |
| 162 |
161
|
olci |
⊢ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) |
| 163 |
162
|
2a1i |
⊢ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) ) → ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ 𝑌 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 164 |
|
elfzofz |
⊢ ( 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 165 |
|
elfzp12 |
⊢ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑌 ) ) → ( 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ↔ ( 𝑚 = ( ⌊ ‘ 𝑌 ) ∨ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) ) |
| 166 |
126 165
|
syl |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ↔ ( 𝑚 = ( ⌊ ‘ 𝑌 ) ∨ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) ) |
| 167 |
164 166
|
imbitrid |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → ( 𝑚 = ( ⌊ ‘ 𝑌 ) ∨ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) ) |
| 168 |
167
|
imp |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑚 = ( ⌊ ‘ 𝑌 ) ∨ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) |
| 169 |
36
|
nnrpd |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℝ+ ) |
| 170 |
41
|
ffvelcdmi |
⊢ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℝ+ → ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ∈ ℝ ) |
| 171 |
169 170
|
syl |
⊢ ( 𝜑 → ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ∈ ℝ ) |
| 172 |
13 171
|
letrid |
⊢ ( 𝜑 → ( 0 ≤ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ∨ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ 0 ) ) |
| 173 |
172
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( 0 ≤ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ∨ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ 0 ) ) |
| 174 |
|
oveq1 |
⊢ ( 𝑚 = ( ⌊ ‘ 𝑌 ) → ( 𝑚 + 1 ) = ( ( ⌊ ‘ 𝑌 ) + 1 ) ) |
| 175 |
174
|
oveq2d |
⊢ ( 𝑚 = ( ⌊ ‘ 𝑌 ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
| 176 |
12
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ∈ ℤ ) |
| 177 |
176
|
peano2zd |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℤ ) |
| 178 |
|
fzsn |
⊢ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℤ → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) = { ( ( ⌊ ‘ 𝑌 ) + 1 ) } ) |
| 179 |
177 178
|
syl |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) = { ( ( ⌊ ‘ 𝑌 ) + 1 ) } ) |
| 180 |
175 179
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) = { ( ( ⌊ ‘ 𝑌 ) + 1 ) } ) |
| 181 |
180
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ { ( ( ⌊ ‘ 𝑌 ) + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
| 182 |
|
ovex |
⊢ ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ V |
| 183 |
|
fveq2 |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
| 184 |
183
|
breq2d |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ) |
| 185 |
182 184
|
ralsn |
⊢ ( ∀ 𝑖 ∈ { ( ( ⌊ ‘ 𝑌 ) + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
| 186 |
181 185
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ) |
| 187 |
180
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ∀ 𝑖 ∈ { ( ( ⌊ ‘ 𝑌 ) + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
| 188 |
183
|
breq1d |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ 0 ) ) |
| 189 |
182 188
|
ralsn |
⊢ ( ∀ 𝑖 ∈ { ( ( ⌊ ‘ 𝑌 ) + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ 0 ) |
| 190 |
187 189
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ 0 ) ) |
| 191 |
186 190
|
orbi12d |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ↔ ( 0 ≤ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ∨ ( 𝑅 ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ 0 ) ) ) |
| 192 |
173 191
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
| 193 |
192
|
a1d |
⊢ ( ( 𝜑 ∧ 𝑚 = ( ⌊ ‘ 𝑌 ) ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 194 |
|
elfzuz |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
| 195 |
194
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
| 196 |
|
eluzfz2 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) → 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ) |
| 197 |
195 196
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ) |
| 198 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ 𝑚 ) ) |
| 199 |
198
|
breq2d |
⊢ ( 𝑖 = 𝑚 → ( 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ 𝑚 ) ) ) |
| 200 |
199
|
rspcv |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) → 0 ≤ ( 𝑅 ‘ 𝑚 ) ) ) |
| 201 |
197 200
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) → 0 ≤ ( 𝑅 ‘ 𝑚 ) ) ) |
| 202 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ¬ ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) |
| 203 |
|
eluznn |
⊢ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) → 𝑚 ∈ ℕ ) |
| 204 |
36 194 203
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑚 ∈ ℕ ) |
| 205 |
204
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → 𝑚 ∈ ℕ ) |
| 206 |
|
elfzle1 |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ 𝑚 ) |
| 207 |
206
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ 𝑚 ) |
| 208 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑚 ∈ ℤ ) |
| 209 |
|
zltp1le |
⊢ ( ( ( ⌊ ‘ 𝑌 ) ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( ( ⌊ ‘ 𝑌 ) < 𝑚 ↔ ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ 𝑚 ) ) |
| 210 |
176 208 209
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ⌊ ‘ 𝑌 ) < 𝑚 ↔ ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ 𝑚 ) ) |
| 211 |
207 210
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ⌊ ‘ 𝑌 ) < 𝑚 ) |
| 212 |
|
fllt |
⊢ ( ( 𝑌 ∈ ℝ ∧ 𝑚 ∈ ℤ ) → ( 𝑌 < 𝑚 ↔ ( ⌊ ‘ 𝑌 ) < 𝑚 ) ) |
| 213 |
12 208 212
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑌 < 𝑚 ↔ ( ⌊ ‘ 𝑌 ) < 𝑚 ) ) |
| 214 |
211 213
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑌 < 𝑚 ) |
| 215 |
|
elfzle2 |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑚 ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) |
| 216 |
215
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑚 ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) |
| 217 |
|
flge |
⊢ ( ( ( 𝐾 · 𝑌 ) ∈ ℝ ∧ 𝑚 ∈ ℤ ) → ( 𝑚 ≤ ( 𝐾 · 𝑌 ) ↔ 𝑚 ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 218 |
109 208 217
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑚 ≤ ( 𝐾 · 𝑌 ) ↔ 𝑚 ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 219 |
216 218
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑚 ≤ ( 𝐾 · 𝑌 ) ) |
| 220 |
214 219
|
jca |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑌 < 𝑚 ∧ 𝑚 ≤ ( 𝐾 · 𝑌 ) ) ) |
| 221 |
220
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → ( 𝑌 < 𝑚 ∧ 𝑚 ≤ ( 𝐾 · 𝑌 ) ) ) |
| 222 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → 𝐸 ∈ ( 0 (,) 1 ) ) |
| 223 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → 𝑌 ∈ ( 𝑋 (,) +∞ ) ) |
| 224 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) |
| 225 |
1 222 3 223 205 221 224
|
pntpbnd1a |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑚 ) / 𝑚 ) ) ≤ 𝐸 ) |
| 226 |
|
breq2 |
⊢ ( 𝑦 = 𝑚 → ( 𝑌 < 𝑦 ↔ 𝑌 < 𝑚 ) ) |
| 227 |
|
breq1 |
⊢ ( 𝑦 = 𝑚 → ( 𝑦 ≤ ( 𝐾 · 𝑌 ) ↔ 𝑚 ≤ ( 𝐾 · 𝑌 ) ) ) |
| 228 |
226 227
|
anbi12d |
⊢ ( 𝑦 = 𝑚 → ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ↔ ( 𝑌 < 𝑚 ∧ 𝑚 ≤ ( 𝐾 · 𝑌 ) ) ) ) |
| 229 |
|
fveq2 |
⊢ ( 𝑦 = 𝑚 → ( 𝑅 ‘ 𝑦 ) = ( 𝑅 ‘ 𝑚 ) ) |
| 230 |
|
id |
⊢ ( 𝑦 = 𝑚 → 𝑦 = 𝑚 ) |
| 231 |
229 230
|
oveq12d |
⊢ ( 𝑦 = 𝑚 → ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) = ( ( 𝑅 ‘ 𝑚 ) / 𝑚 ) ) |
| 232 |
231
|
fveq2d |
⊢ ( 𝑦 = 𝑚 → ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) = ( abs ‘ ( ( 𝑅 ‘ 𝑚 ) / 𝑚 ) ) ) |
| 233 |
232
|
breq1d |
⊢ ( 𝑦 = 𝑚 → ( ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ↔ ( abs ‘ ( ( 𝑅 ‘ 𝑚 ) / 𝑚 ) ) ≤ 𝐸 ) ) |
| 234 |
228 233
|
anbi12d |
⊢ ( 𝑦 = 𝑚 → ( ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ↔ ( ( 𝑌 < 𝑚 ∧ 𝑚 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑚 ) / 𝑚 ) ) ≤ 𝐸 ) ) ) |
| 235 |
234
|
rspcev |
⊢ ( ( 𝑚 ∈ ℕ ∧ ( ( 𝑌 < 𝑚 ∧ 𝑚 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑚 ) / 𝑚 ) ) ≤ 𝐸 ) ) → ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) |
| 236 |
205 221 225 235
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) → ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) |
| 237 |
202 236
|
mtand |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ¬ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) |
| 238 |
237
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ 0 ≤ ( 𝑅 ‘ 𝑚 ) ) → ¬ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) |
| 239 |
204
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑚 ∈ ℝ+ ) |
| 240 |
41
|
ffvelcdmi |
⊢ ( 𝑚 ∈ ℝ+ → ( 𝑅 ‘ 𝑚 ) ∈ ℝ ) |
| 241 |
239 240
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑚 ) ∈ ℝ ) |
| 242 |
241
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( 𝑅 ‘ 𝑚 ) ∈ ℝ ) |
| 243 |
242
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( 𝑅 ‘ 𝑚 ) ∈ ℂ ) |
| 244 |
243
|
subid1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( ( 𝑅 ‘ 𝑚 ) − 0 ) = ( 𝑅 ‘ 𝑚 ) ) |
| 245 |
204
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑚 + 1 ) ∈ ℕ ) |
| 246 |
245
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑚 + 1 ) ∈ ℝ+ ) |
| 247 |
41
|
ffvelcdmi |
⊢ ( ( 𝑚 + 1 ) ∈ ℝ+ → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) |
| 248 |
246 247
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) |
| 249 |
248
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) |
| 250 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → 0 ∈ ℝ ) |
| 251 |
|
0re |
⊢ 0 ∈ ℝ |
| 252 |
|
letric |
⊢ ( ( 0 ∈ ℝ ∧ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) → ( 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∨ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) |
| 253 |
251 248 252
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∨ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) |
| 254 |
253
|
ord |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) |
| 255 |
254
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) |
| 256 |
255
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) |
| 257 |
249 250 242 256
|
lesub2dd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( ( 𝑅 ‘ 𝑚 ) − 0 ) ≤ ( ( 𝑅 ‘ 𝑚 ) − ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
| 258 |
244 257
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( 𝑅 ‘ 𝑚 ) ≤ ( ( 𝑅 ‘ 𝑚 ) − ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
| 259 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → 0 ≤ ( 𝑅 ‘ 𝑚 ) ) |
| 260 |
242 259
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) = ( 𝑅 ‘ 𝑚 ) ) |
| 261 |
249 250 242 256 259
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ ( 𝑅 ‘ 𝑚 ) ) |
| 262 |
249 242 261
|
abssuble0d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) = ( ( 𝑅 ‘ 𝑚 ) − ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
| 263 |
258 260 262
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 0 ≤ ( 𝑅 ‘ 𝑚 ) ∧ ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) |
| 264 |
263
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ 0 ≤ ( 𝑅 ‘ 𝑚 ) ) → ( ¬ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) ) |
| 265 |
238 264
|
mt3d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ 0 ≤ ( 𝑅 ‘ 𝑚 ) ) → 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) |
| 266 |
265
|
ex |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 0 ≤ ( 𝑅 ‘ 𝑚 ) → 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
| 267 |
201 266
|
syld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) → 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
| 268 |
|
ovex |
⊢ ( 𝑚 + 1 ) ∈ V |
| 269 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 𝑅 ‘ 𝑖 ) = ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) |
| 270 |
269
|
breq2d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
| 271 |
268 270
|
ralsn |
⊢ ( ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) |
| 272 |
267 271
|
imbitrrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) → ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
| 273 |
272
|
ancld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) ) |
| 274 |
|
fzsuc |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) = ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ) |
| 275 |
195 274
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) = ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ) |
| 276 |
275
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
| 277 |
|
ralunb |
⊢ ( ∀ 𝑖 ∈ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
| 278 |
276 277
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∧ ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) ) |
| 279 |
273 278
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) → ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ) ) |
| 280 |
198
|
breq1d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ 𝑚 ) ≤ 0 ) ) |
| 281 |
280
|
rspcv |
⊢ ( 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 → ( 𝑅 ‘ 𝑚 ) ≤ 0 ) ) |
| 282 |
197 281
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 → ( 𝑅 ‘ 𝑚 ) ≤ 0 ) ) |
| 283 |
237
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 𝑅 ‘ 𝑚 ) ≤ 0 ) → ¬ ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) |
| 284 |
254
|
con1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 → 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) ) |
| 285 |
284
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) → 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) |
| 286 |
285
|
adantrl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) |
| 287 |
241
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 𝑅 ‘ 𝑚 ) ∈ ℝ ) |
| 288 |
287
|
renegcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → - ( 𝑅 ‘ 𝑚 ) ∈ ℝ ) |
| 289 |
248
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∈ ℝ ) |
| 290 |
288 289
|
addge02d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 0 ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ↔ - ( 𝑅 ‘ 𝑚 ) ≤ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) + - ( 𝑅 ‘ 𝑚 ) ) ) ) |
| 291 |
286 290
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → - ( 𝑅 ‘ 𝑚 ) ≤ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) + - ( 𝑅 ‘ 𝑚 ) ) ) |
| 292 |
289
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ∈ ℂ ) |
| 293 |
287
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 𝑅 ‘ 𝑚 ) ∈ ℂ ) |
| 294 |
292 293
|
negsubd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) + - ( 𝑅 ‘ 𝑚 ) ) = ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) |
| 295 |
291 294
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → - ( 𝑅 ‘ 𝑚 ) ≤ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) |
| 296 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 𝑅 ‘ 𝑚 ) ≤ 0 ) |
| 297 |
287 296
|
absnidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) = - ( 𝑅 ‘ 𝑚 ) ) |
| 298 |
|
0red |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → 0 ∈ ℝ ) |
| 299 |
287 298 289 296 286
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( 𝑅 ‘ 𝑚 ) ≤ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ) |
| 300 |
287 289 299
|
abssubge0d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) = ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) |
| 301 |
295 297 300
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( ( 𝑅 ‘ 𝑚 ) ≤ 0 ∧ ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) |
| 302 |
301
|
expr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 𝑅 ‘ 𝑚 ) ≤ 0 ) → ( ¬ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 → ( abs ‘ ( 𝑅 ‘ 𝑚 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑚 + 1 ) ) − ( 𝑅 ‘ 𝑚 ) ) ) ) ) |
| 303 |
283 302
|
mt3d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ∧ ( 𝑅 ‘ 𝑚 ) ≤ 0 ) → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) |
| 304 |
303
|
ex |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑚 ) ≤ 0 → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) |
| 305 |
282 304
|
syld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 → ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) |
| 306 |
269
|
breq1d |
⊢ ( 𝑖 = ( 𝑚 + 1 ) → ( ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) ) |
| 307 |
268 306
|
ralsn |
⊢ ( ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( 𝑅 ‘ ( 𝑚 + 1 ) ) ≤ 0 ) |
| 308 |
305 307
|
imbitrrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 → ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
| 309 |
308
|
ancld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ∧ ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 310 |
275
|
raleqdv |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ∀ 𝑖 ∈ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
| 311 |
|
ralunb |
⊢ ( ∀ 𝑖 ∈ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ∪ { ( 𝑚 + 1 ) } ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ∧ ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
| 312 |
310 311
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ↔ ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ∧ ∀ 𝑖 ∈ { ( 𝑚 + 1 ) } ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 313 |
309 312
|
sylibrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 → ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
| 314 |
279 313
|
orim12d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 315 |
193 314
|
jaodan |
⊢ ( ( 𝜑 ∧ ( 𝑚 = ( ⌊ ‘ 𝑌 ) ∨ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 316 |
168 315
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 317 |
316
|
expcom |
⊢ ( 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → ( 𝜑 → ( ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) ) |
| 318 |
317
|
a2d |
⊢ ( 𝑚 ∈ ( ( ⌊ ‘ 𝑌 ) ..^ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → ( ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑚 ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) → ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( 𝑚 + 1 ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) ) |
| 319 |
136 141 146 151 163 318
|
fzind2 |
⊢ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ( ( ⌊ ‘ 𝑌 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) ) |
| 320 |
131 319
|
mpcom |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) 0 ≤ ( 𝑅 ‘ 𝑖 ) ∨ ∀ 𝑖 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝑅 ‘ 𝑖 ) ≤ 0 ) ) |
| 321 |
63 97 320
|
mpjaodan |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 322 |
|
fveq2 |
⊢ ( 𝑦 = 𝑛 → ( 𝑅 ‘ 𝑦 ) = ( 𝑅 ‘ 𝑛 ) ) |
| 323 |
|
id |
⊢ ( 𝑦 = 𝑛 → 𝑦 = 𝑛 ) |
| 324 |
|
oveq1 |
⊢ ( 𝑦 = 𝑛 → ( 𝑦 + 1 ) = ( 𝑛 + 1 ) ) |
| 325 |
323 324
|
oveq12d |
⊢ ( 𝑦 = 𝑛 → ( 𝑦 · ( 𝑦 + 1 ) ) = ( 𝑛 · ( 𝑛 + 1 ) ) ) |
| 326 |
322 325
|
oveq12d |
⊢ ( 𝑦 = 𝑛 → ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) = ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 327 |
326
|
cbvsumv |
⊢ Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) = Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) |
| 328 |
|
oveq1 |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( 𝑖 ... 𝑗 ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ) |
| 329 |
328
|
sumeq1d |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → Σ 𝑛 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 330 |
327 329
|
eqtrid |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 331 |
330
|
fveq2d |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( abs ‘ Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) ) = ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 332 |
331
|
breq1d |
⊢ ( 𝑖 = ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( ( abs ‘ Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) ) ≤ 𝐴 ↔ ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ) ) |
| 333 |
|
oveq2 |
⊢ ( 𝑗 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) = ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 334 |
333
|
sumeq1d |
⊢ ( 𝑗 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 335 |
334
|
fveq2d |
⊢ ( 𝑗 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 336 |
335
|
breq1d |
⊢ ( 𝑗 = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) → ( ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... 𝑗 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ↔ ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ) ) |
| 337 |
332 336
|
rspc2va |
⊢ ( ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ∧ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℤ ) ∧ ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) ) ≤ 𝐴 ) → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ) |
| 338 |
36 127 6 337
|
syl21anc |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ) |
| 339 |
321 338
|
eqbrtrrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ) |