| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntpbnd.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
| 2 |
|
pntpbnd1.e |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 (,) 1 ) ) |
| 3 |
|
pntpbnd1.x |
⊢ 𝑋 = ( exp ‘ ( 2 / 𝐸 ) ) |
| 4 |
|
pntpbnd1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 (,) +∞ ) ) |
| 5 |
|
pntpbnd1a.1 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 6 |
|
pntpbnd1a.2 |
⊢ ( 𝜑 → ( 𝑌 < 𝑁 ∧ 𝑁 ≤ ( 𝐾 · 𝑌 ) ) ) |
| 7 |
|
pntpbnd1a.3 |
⊢ ( 𝜑 → ( abs ‘ ( 𝑅 ‘ 𝑁 ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ ( 𝑁 + 1 ) ) − ( 𝑅 ‘ 𝑁 ) ) ) ) |
| 8 |
5
|
nnrpd |
⊢ ( 𝜑 → 𝑁 ∈ ℝ+ ) |
| 9 |
1
|
pntrf |
⊢ 𝑅 : ℝ+ ⟶ ℝ |
| 10 |
9
|
ffvelcdmi |
⊢ ( 𝑁 ∈ ℝ+ → ( 𝑅 ‘ 𝑁 ) ∈ ℝ ) |
| 11 |
8 10
|
syl |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝑁 ) ∈ ℝ ) |
| 12 |
11 8
|
rerpdivcld |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝑁 ) / 𝑁 ) ∈ ℝ ) |
| 13 |
12
|
recnd |
⊢ ( 𝜑 → ( ( 𝑅 ‘ 𝑁 ) / 𝑁 ) ∈ ℂ ) |
| 14 |
13
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑅 ‘ 𝑁 ) / 𝑁 ) ) ∈ ℝ ) |
| 15 |
8
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑁 ) ∈ ℝ ) |
| 16 |
15 8
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) / 𝑁 ) ∈ ℝ ) |
| 17 |
|
ioossre |
⊢ ( 0 (,) 1 ) ⊆ ℝ |
| 18 |
17 2
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 19 |
11
|
recnd |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝑁 ) ∈ ℂ ) |
| 20 |
5
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 22 |
5
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 23 |
19 21 22
|
absdivd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑅 ‘ 𝑁 ) / 𝑁 ) ) = ( ( abs ‘ ( 𝑅 ‘ 𝑁 ) ) / ( abs ‘ 𝑁 ) ) ) |
| 24 |
5
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 25 |
24
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑁 ) |
| 26 |
20 25
|
absidd |
⊢ ( 𝜑 → ( abs ‘ 𝑁 ) = 𝑁 ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑅 ‘ 𝑁 ) ) / ( abs ‘ 𝑁 ) ) = ( ( abs ‘ ( 𝑅 ‘ 𝑁 ) ) / 𝑁 ) ) |
| 28 |
23 27
|
eqtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑅 ‘ 𝑁 ) / 𝑁 ) ) = ( ( abs ‘ ( 𝑅 ‘ 𝑁 ) ) / 𝑁 ) ) |
| 29 |
19
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( 𝑅 ‘ 𝑁 ) ) ∈ ℝ ) |
| 30 |
5
|
peano2nnd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 31 |
|
vmacl |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( Λ ‘ ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 32 |
30 31
|
syl |
⊢ ( 𝜑 → ( Λ ‘ ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 33 |
|
peano2rem |
⊢ ( ( Λ ‘ ( 𝑁 + 1 ) ) ∈ ℝ → ( ( Λ ‘ ( 𝑁 + 1 ) ) − 1 ) ∈ ℝ ) |
| 34 |
32 33
|
syl |
⊢ ( 𝜑 → ( ( Λ ‘ ( 𝑁 + 1 ) ) − 1 ) ∈ ℝ ) |
| 35 |
34
|
recnd |
⊢ ( 𝜑 → ( ( Λ ‘ ( 𝑁 + 1 ) ) − 1 ) ∈ ℂ ) |
| 36 |
35
|
abscld |
⊢ ( 𝜑 → ( abs ‘ ( ( Λ ‘ ( 𝑁 + 1 ) ) − 1 ) ) ∈ ℝ ) |
| 37 |
30
|
nnrpd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℝ+ ) |
| 38 |
1
|
pntrval |
⊢ ( ( 𝑁 + 1 ) ∈ ℝ+ → ( 𝑅 ‘ ( 𝑁 + 1 ) ) = ( ( ψ ‘ ( 𝑁 + 1 ) ) − ( 𝑁 + 1 ) ) ) |
| 39 |
37 38
|
syl |
⊢ ( 𝜑 → ( 𝑅 ‘ ( 𝑁 + 1 ) ) = ( ( ψ ‘ ( 𝑁 + 1 ) ) − ( 𝑁 + 1 ) ) ) |
| 40 |
1
|
pntrval |
⊢ ( 𝑁 ∈ ℝ+ → ( 𝑅 ‘ 𝑁 ) = ( ( ψ ‘ 𝑁 ) − 𝑁 ) ) |
| 41 |
8 40
|
syl |
⊢ ( 𝜑 → ( 𝑅 ‘ 𝑁 ) = ( ( ψ ‘ 𝑁 ) − 𝑁 ) ) |
| 42 |
39 41
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑅 ‘ ( 𝑁 + 1 ) ) − ( 𝑅 ‘ 𝑁 ) ) = ( ( ( ψ ‘ ( 𝑁 + 1 ) ) − ( 𝑁 + 1 ) ) − ( ( ψ ‘ 𝑁 ) − 𝑁 ) ) ) |
| 43 |
|
peano2re |
⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) |
| 44 |
20 43
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℝ ) |
| 45 |
|
chpcl |
⊢ ( ( 𝑁 + 1 ) ∈ ℝ → ( ψ ‘ ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 46 |
44 45
|
syl |
⊢ ( 𝜑 → ( ψ ‘ ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 47 |
46
|
recnd |
⊢ ( 𝜑 → ( ψ ‘ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 48 |
44
|
recnd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℂ ) |
| 49 |
|
chpcl |
⊢ ( 𝑁 ∈ ℝ → ( ψ ‘ 𝑁 ) ∈ ℝ ) |
| 50 |
20 49
|
syl |
⊢ ( 𝜑 → ( ψ ‘ 𝑁 ) ∈ ℝ ) |
| 51 |
50
|
recnd |
⊢ ( 𝜑 → ( ψ ‘ 𝑁 ) ∈ ℂ ) |
| 52 |
47 48 51 21
|
sub4d |
⊢ ( 𝜑 → ( ( ( ψ ‘ ( 𝑁 + 1 ) ) − ( 𝑁 + 1 ) ) − ( ( ψ ‘ 𝑁 ) − 𝑁 ) ) = ( ( ( ψ ‘ ( 𝑁 + 1 ) ) − ( ψ ‘ 𝑁 ) ) − ( ( 𝑁 + 1 ) − 𝑁 ) ) ) |
| 53 |
32
|
recnd |
⊢ ( 𝜑 → ( Λ ‘ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 54 |
|
chpp1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ψ ‘ ( 𝑁 + 1 ) ) = ( ( ψ ‘ 𝑁 ) + ( Λ ‘ ( 𝑁 + 1 ) ) ) ) |
| 55 |
24 54
|
syl |
⊢ ( 𝜑 → ( ψ ‘ ( 𝑁 + 1 ) ) = ( ( ψ ‘ 𝑁 ) + ( Λ ‘ ( 𝑁 + 1 ) ) ) ) |
| 56 |
51 53 55
|
mvrladdd |
⊢ ( 𝜑 → ( ( ψ ‘ ( 𝑁 + 1 ) ) − ( ψ ‘ 𝑁 ) ) = ( Λ ‘ ( 𝑁 + 1 ) ) ) |
| 57 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 58 |
|
pncan2 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 𝑁 ) = 1 ) |
| 59 |
21 57 58
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 𝑁 ) = 1 ) |
| 60 |
56 59
|
oveq12d |
⊢ ( 𝜑 → ( ( ( ψ ‘ ( 𝑁 + 1 ) ) − ( ψ ‘ 𝑁 ) ) − ( ( 𝑁 + 1 ) − 𝑁 ) ) = ( ( Λ ‘ ( 𝑁 + 1 ) ) − 1 ) ) |
| 61 |
42 52 60
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝑅 ‘ ( 𝑁 + 1 ) ) − ( 𝑅 ‘ 𝑁 ) ) = ( ( Λ ‘ ( 𝑁 + 1 ) ) − 1 ) ) |
| 62 |
61
|
fveq2d |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑅 ‘ ( 𝑁 + 1 ) ) − ( 𝑅 ‘ 𝑁 ) ) ) = ( abs ‘ ( ( Λ ‘ ( 𝑁 + 1 ) ) − 1 ) ) ) |
| 63 |
7 62
|
breqtrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑅 ‘ 𝑁 ) ) ≤ ( abs ‘ ( ( Λ ‘ ( 𝑁 + 1 ) ) − 1 ) ) ) |
| 64 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 65 |
64 15
|
resubcld |
⊢ ( 𝜑 → ( 1 − ( log ‘ 𝑁 ) ) ∈ ℝ ) |
| 66 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 67 |
|
2re |
⊢ 2 ∈ ℝ |
| 68 |
|
eliooord |
⊢ ( 𝐸 ∈ ( 0 (,) 1 ) → ( 0 < 𝐸 ∧ 𝐸 < 1 ) ) |
| 69 |
2 68
|
syl |
⊢ ( 𝜑 → ( 0 < 𝐸 ∧ 𝐸 < 1 ) ) |
| 70 |
69
|
simpld |
⊢ ( 𝜑 → 0 < 𝐸 ) |
| 71 |
18 70
|
elrpd |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 72 |
|
rerpdivcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) → ( 2 / 𝐸 ) ∈ ℝ ) |
| 73 |
67 71 72
|
sylancr |
⊢ ( 𝜑 → ( 2 / 𝐸 ) ∈ ℝ ) |
| 74 |
67
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 75 |
|
1lt2 |
⊢ 1 < 2 |
| 76 |
75
|
a1i |
⊢ ( 𝜑 → 1 < 2 ) |
| 77 |
|
2cn |
⊢ 2 ∈ ℂ |
| 78 |
77
|
div1i |
⊢ ( 2 / 1 ) = 2 |
| 79 |
69
|
simprd |
⊢ ( 𝜑 → 𝐸 < 1 ) |
| 80 |
|
0lt1 |
⊢ 0 < 1 |
| 81 |
80
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 82 |
|
2pos |
⊢ 0 < 2 |
| 83 |
82
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 84 |
|
ltdiv2 |
⊢ ( ( ( 𝐸 ∈ ℝ ∧ 0 < 𝐸 ) ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( 𝐸 < 1 ↔ ( 2 / 1 ) < ( 2 / 𝐸 ) ) ) |
| 85 |
18 70 64 81 74 83 84
|
syl222anc |
⊢ ( 𝜑 → ( 𝐸 < 1 ↔ ( 2 / 1 ) < ( 2 / 𝐸 ) ) ) |
| 86 |
79 85
|
mpbid |
⊢ ( 𝜑 → ( 2 / 1 ) < ( 2 / 𝐸 ) ) |
| 87 |
78 86
|
eqbrtrrid |
⊢ ( 𝜑 → 2 < ( 2 / 𝐸 ) ) |
| 88 |
64 74 73 76 87
|
lttrd |
⊢ ( 𝜑 → 1 < ( 2 / 𝐸 ) ) |
| 89 |
73
|
rpefcld |
⊢ ( 𝜑 → ( exp ‘ ( 2 / 𝐸 ) ) ∈ ℝ+ ) |
| 90 |
3 89
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ+ ) |
| 91 |
90
|
rpred |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 92 |
90
|
rpxrd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 93 |
|
elioopnf |
⊢ ( 𝑋 ∈ ℝ* → ( 𝑌 ∈ ( 𝑋 (,) +∞ ) ↔ ( 𝑌 ∈ ℝ ∧ 𝑋 < 𝑌 ) ) ) |
| 94 |
92 93
|
syl |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑋 (,) +∞ ) ↔ ( 𝑌 ∈ ℝ ∧ 𝑋 < 𝑌 ) ) ) |
| 95 |
4 94
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 ∈ ℝ ∧ 𝑋 < 𝑌 ) ) |
| 96 |
95
|
simpld |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 97 |
95
|
simprd |
⊢ ( 𝜑 → 𝑋 < 𝑌 ) |
| 98 |
6
|
simpld |
⊢ ( 𝜑 → 𝑌 < 𝑁 ) |
| 99 |
91 96 20 97 98
|
lttrd |
⊢ ( 𝜑 → 𝑋 < 𝑁 ) |
| 100 |
3 99
|
eqbrtrrid |
⊢ ( 𝜑 → ( exp ‘ ( 2 / 𝐸 ) ) < 𝑁 ) |
| 101 |
8
|
reeflogd |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ 𝑁 ) ) = 𝑁 ) |
| 102 |
100 101
|
breqtrrd |
⊢ ( 𝜑 → ( exp ‘ ( 2 / 𝐸 ) ) < ( exp ‘ ( log ‘ 𝑁 ) ) ) |
| 103 |
|
eflt |
⊢ ( ( ( 2 / 𝐸 ) ∈ ℝ ∧ ( log ‘ 𝑁 ) ∈ ℝ ) → ( ( 2 / 𝐸 ) < ( log ‘ 𝑁 ) ↔ ( exp ‘ ( 2 / 𝐸 ) ) < ( exp ‘ ( log ‘ 𝑁 ) ) ) ) |
| 104 |
73 15 103
|
syl2anc |
⊢ ( 𝜑 → ( ( 2 / 𝐸 ) < ( log ‘ 𝑁 ) ↔ ( exp ‘ ( 2 / 𝐸 ) ) < ( exp ‘ ( log ‘ 𝑁 ) ) ) ) |
| 105 |
102 104
|
mpbird |
⊢ ( 𝜑 → ( 2 / 𝐸 ) < ( log ‘ 𝑁 ) ) |
| 106 |
64 73 15 88 105
|
lttrd |
⊢ ( 𝜑 → 1 < ( log ‘ 𝑁 ) ) |
| 107 |
64 15 106
|
ltled |
⊢ ( 𝜑 → 1 ≤ ( log ‘ 𝑁 ) ) |
| 108 |
|
1re |
⊢ 1 ∈ ℝ |
| 109 |
|
suble0 |
⊢ ( ( 1 ∈ ℝ ∧ ( log ‘ 𝑁 ) ∈ ℝ ) → ( ( 1 − ( log ‘ 𝑁 ) ) ≤ 0 ↔ 1 ≤ ( log ‘ 𝑁 ) ) ) |
| 110 |
108 15 109
|
sylancr |
⊢ ( 𝜑 → ( ( 1 − ( log ‘ 𝑁 ) ) ≤ 0 ↔ 1 ≤ ( log ‘ 𝑁 ) ) ) |
| 111 |
107 110
|
mpbird |
⊢ ( 𝜑 → ( 1 − ( log ‘ 𝑁 ) ) ≤ 0 ) |
| 112 |
|
vmage0 |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ → 0 ≤ ( Λ ‘ ( 𝑁 + 1 ) ) ) |
| 113 |
30 112
|
syl |
⊢ ( 𝜑 → 0 ≤ ( Λ ‘ ( 𝑁 + 1 ) ) ) |
| 114 |
65 66 32 111 113
|
letrd |
⊢ ( 𝜑 → ( 1 − ( log ‘ 𝑁 ) ) ≤ ( Λ ‘ ( 𝑁 + 1 ) ) ) |
| 115 |
37
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 𝑁 + 1 ) ) ∈ ℝ ) |
| 116 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ ( log ‘ 𝑁 ) ∈ ℝ ) → ( 1 + ( log ‘ 𝑁 ) ) ∈ ℝ ) |
| 117 |
108 15 116
|
sylancr |
⊢ ( 𝜑 → ( 1 + ( log ‘ 𝑁 ) ) ∈ ℝ ) |
| 118 |
|
vmalelog |
⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( Λ ‘ ( 𝑁 + 1 ) ) ≤ ( log ‘ ( 𝑁 + 1 ) ) ) |
| 119 |
30 118
|
syl |
⊢ ( 𝜑 → ( Λ ‘ ( 𝑁 + 1 ) ) ≤ ( log ‘ ( 𝑁 + 1 ) ) ) |
| 120 |
74 20
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ∈ ℝ ) |
| 121 |
|
epr |
⊢ e ∈ ℝ+ |
| 122 |
|
rpmulcl |
⊢ ( ( e ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) → ( e · 𝑁 ) ∈ ℝ+ ) |
| 123 |
121 8 122
|
sylancr |
⊢ ( 𝜑 → ( e · 𝑁 ) ∈ ℝ+ ) |
| 124 |
123
|
rpred |
⊢ ( 𝜑 → ( e · 𝑁 ) ∈ ℝ ) |
| 125 |
5
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ 𝑁 ) |
| 126 |
64 20 20 125
|
leadd2dd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ≤ ( 𝑁 + 𝑁 ) ) |
| 127 |
21
|
2timesd |
⊢ ( 𝜑 → ( 2 · 𝑁 ) = ( 𝑁 + 𝑁 ) ) |
| 128 |
126 127
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ≤ ( 2 · 𝑁 ) ) |
| 129 |
|
ere |
⊢ e ∈ ℝ |
| 130 |
|
egt2lt3 |
⊢ ( 2 < e ∧ e < 3 ) |
| 131 |
130
|
simpli |
⊢ 2 < e |
| 132 |
67 129 131
|
ltleii |
⊢ 2 ≤ e |
| 133 |
132
|
a1i |
⊢ ( 𝜑 → 2 ≤ e ) |
| 134 |
129
|
a1i |
⊢ ( 𝜑 → e ∈ ℝ ) |
| 135 |
5
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
| 136 |
|
lemul1 |
⊢ ( ( 2 ∈ ℝ ∧ e ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( 2 ≤ e ↔ ( 2 · 𝑁 ) ≤ ( e · 𝑁 ) ) ) |
| 137 |
74 134 20 135 136
|
syl112anc |
⊢ ( 𝜑 → ( 2 ≤ e ↔ ( 2 · 𝑁 ) ≤ ( e · 𝑁 ) ) ) |
| 138 |
133 137
|
mpbid |
⊢ ( 𝜑 → ( 2 · 𝑁 ) ≤ ( e · 𝑁 ) ) |
| 139 |
44 120 124 128 138
|
letrd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ≤ ( e · 𝑁 ) ) |
| 140 |
37 123
|
logled |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) ≤ ( e · 𝑁 ) ↔ ( log ‘ ( 𝑁 + 1 ) ) ≤ ( log ‘ ( e · 𝑁 ) ) ) ) |
| 141 |
139 140
|
mpbid |
⊢ ( 𝜑 → ( log ‘ ( 𝑁 + 1 ) ) ≤ ( log ‘ ( e · 𝑁 ) ) ) |
| 142 |
|
relogmul |
⊢ ( ( e ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) → ( log ‘ ( e · 𝑁 ) ) = ( ( log ‘ e ) + ( log ‘ 𝑁 ) ) ) |
| 143 |
121 8 142
|
sylancr |
⊢ ( 𝜑 → ( log ‘ ( e · 𝑁 ) ) = ( ( log ‘ e ) + ( log ‘ 𝑁 ) ) ) |
| 144 |
|
loge |
⊢ ( log ‘ e ) = 1 |
| 145 |
144
|
oveq1i |
⊢ ( ( log ‘ e ) + ( log ‘ 𝑁 ) ) = ( 1 + ( log ‘ 𝑁 ) ) |
| 146 |
143 145
|
eqtrdi |
⊢ ( 𝜑 → ( log ‘ ( e · 𝑁 ) ) = ( 1 + ( log ‘ 𝑁 ) ) ) |
| 147 |
141 146
|
breqtrd |
⊢ ( 𝜑 → ( log ‘ ( 𝑁 + 1 ) ) ≤ ( 1 + ( log ‘ 𝑁 ) ) ) |
| 148 |
32 115 117 119 147
|
letrd |
⊢ ( 𝜑 → ( Λ ‘ ( 𝑁 + 1 ) ) ≤ ( 1 + ( log ‘ 𝑁 ) ) ) |
| 149 |
32 64 15
|
absdifled |
⊢ ( 𝜑 → ( ( abs ‘ ( ( Λ ‘ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( log ‘ 𝑁 ) ↔ ( ( 1 − ( log ‘ 𝑁 ) ) ≤ ( Λ ‘ ( 𝑁 + 1 ) ) ∧ ( Λ ‘ ( 𝑁 + 1 ) ) ≤ ( 1 + ( log ‘ 𝑁 ) ) ) ) ) |
| 150 |
114 148 149
|
mpbir2and |
⊢ ( 𝜑 → ( abs ‘ ( ( Λ ‘ ( 𝑁 + 1 ) ) − 1 ) ) ≤ ( log ‘ 𝑁 ) ) |
| 151 |
29 36 15 63 150
|
letrd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑅 ‘ 𝑁 ) ) ≤ ( log ‘ 𝑁 ) ) |
| 152 |
29 15 8 151
|
lediv1dd |
⊢ ( 𝜑 → ( ( abs ‘ ( 𝑅 ‘ 𝑁 ) ) / 𝑁 ) ≤ ( ( log ‘ 𝑁 ) / 𝑁 ) ) |
| 153 |
28 152
|
eqbrtrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑅 ‘ 𝑁 ) / 𝑁 ) ) ≤ ( ( log ‘ 𝑁 ) / 𝑁 ) ) |
| 154 |
90
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑋 ) ∈ ℝ ) |
| 155 |
154 90
|
rerpdivcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑋 ) / 𝑋 ) ∈ ℝ ) |
| 156 |
64 73 88
|
ltled |
⊢ ( 𝜑 → 1 ≤ ( 2 / 𝐸 ) ) |
| 157 |
|
efle |
⊢ ( ( 1 ∈ ℝ ∧ ( 2 / 𝐸 ) ∈ ℝ ) → ( 1 ≤ ( 2 / 𝐸 ) ↔ ( exp ‘ 1 ) ≤ ( exp ‘ ( 2 / 𝐸 ) ) ) ) |
| 158 |
108 73 157
|
sylancr |
⊢ ( 𝜑 → ( 1 ≤ ( 2 / 𝐸 ) ↔ ( exp ‘ 1 ) ≤ ( exp ‘ ( 2 / 𝐸 ) ) ) ) |
| 159 |
156 158
|
mpbid |
⊢ ( 𝜑 → ( exp ‘ 1 ) ≤ ( exp ‘ ( 2 / 𝐸 ) ) ) |
| 160 |
|
df-e |
⊢ e = ( exp ‘ 1 ) |
| 161 |
159 160 3
|
3brtr4g |
⊢ ( 𝜑 → e ≤ 𝑋 ) |
| 162 |
144 107
|
eqbrtrid |
⊢ ( 𝜑 → ( log ‘ e ) ≤ ( log ‘ 𝑁 ) ) |
| 163 |
|
logleb |
⊢ ( ( e ∈ ℝ+ ∧ 𝑁 ∈ ℝ+ ) → ( e ≤ 𝑁 ↔ ( log ‘ e ) ≤ ( log ‘ 𝑁 ) ) ) |
| 164 |
121 8 163
|
sylancr |
⊢ ( 𝜑 → ( e ≤ 𝑁 ↔ ( log ‘ e ) ≤ ( log ‘ 𝑁 ) ) ) |
| 165 |
162 164
|
mpbird |
⊢ ( 𝜑 → e ≤ 𝑁 ) |
| 166 |
|
logdivlt |
⊢ ( ( ( 𝑋 ∈ ℝ ∧ e ≤ 𝑋 ) ∧ ( 𝑁 ∈ ℝ ∧ e ≤ 𝑁 ) ) → ( 𝑋 < 𝑁 ↔ ( ( log ‘ 𝑁 ) / 𝑁 ) < ( ( log ‘ 𝑋 ) / 𝑋 ) ) ) |
| 167 |
91 161 20 165 166
|
syl22anc |
⊢ ( 𝜑 → ( 𝑋 < 𝑁 ↔ ( ( log ‘ 𝑁 ) / 𝑁 ) < ( ( log ‘ 𝑋 ) / 𝑋 ) ) ) |
| 168 |
99 167
|
mpbid |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) / 𝑁 ) < ( ( log ‘ 𝑋 ) / 𝑋 ) ) |
| 169 |
3
|
fveq2i |
⊢ ( log ‘ 𝑋 ) = ( log ‘ ( exp ‘ ( 2 / 𝐸 ) ) ) |
| 170 |
73
|
relogefd |
⊢ ( 𝜑 → ( log ‘ ( exp ‘ ( 2 / 𝐸 ) ) ) = ( 2 / 𝐸 ) ) |
| 171 |
169 170
|
eqtrid |
⊢ ( 𝜑 → ( log ‘ 𝑋 ) = ( 2 / 𝐸 ) ) |
| 172 |
171
|
oveq1d |
⊢ ( 𝜑 → ( ( log ‘ 𝑋 ) / 𝑋 ) = ( ( 2 / 𝐸 ) / 𝑋 ) ) |
| 173 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 174 |
|
rpdivcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝐸 ∈ ℝ+ ) → ( 2 / 𝐸 ) ∈ ℝ+ ) |
| 175 |
173 71 174
|
sylancr |
⊢ ( 𝜑 → ( 2 / 𝐸 ) ∈ ℝ+ ) |
| 176 |
175
|
rpcnd |
⊢ ( 𝜑 → ( 2 / 𝐸 ) ∈ ℂ ) |
| 177 |
176
|
sqvald |
⊢ ( 𝜑 → ( ( 2 / 𝐸 ) ↑ 2 ) = ( ( 2 / 𝐸 ) · ( 2 / 𝐸 ) ) ) |
| 178 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 179 |
71
|
rpcnne0d |
⊢ ( 𝜑 → ( 𝐸 ∈ ℂ ∧ 𝐸 ≠ 0 ) ) |
| 180 |
|
div12 |
⊢ ( ( ( 2 / 𝐸 ) ∈ ℂ ∧ 2 ∈ ℂ ∧ ( 𝐸 ∈ ℂ ∧ 𝐸 ≠ 0 ) ) → ( ( 2 / 𝐸 ) · ( 2 / 𝐸 ) ) = ( 2 · ( ( 2 / 𝐸 ) / 𝐸 ) ) ) |
| 181 |
176 178 179 180
|
syl3anc |
⊢ ( 𝜑 → ( ( 2 / 𝐸 ) · ( 2 / 𝐸 ) ) = ( 2 · ( ( 2 / 𝐸 ) / 𝐸 ) ) ) |
| 182 |
177 181
|
eqtrd |
⊢ ( 𝜑 → ( ( 2 / 𝐸 ) ↑ 2 ) = ( 2 · ( ( 2 / 𝐸 ) / 𝐸 ) ) ) |
| 183 |
182
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2 / 𝐸 ) ↑ 2 ) / 2 ) = ( ( 2 · ( ( 2 / 𝐸 ) / 𝐸 ) ) / 2 ) ) |
| 184 |
175 71
|
rpdivcld |
⊢ ( 𝜑 → ( ( 2 / 𝐸 ) / 𝐸 ) ∈ ℝ+ ) |
| 185 |
184
|
rpcnd |
⊢ ( 𝜑 → ( ( 2 / 𝐸 ) / 𝐸 ) ∈ ℂ ) |
| 186 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 187 |
186
|
a1i |
⊢ ( 𝜑 → 2 ≠ 0 ) |
| 188 |
185 178 187
|
divcan3d |
⊢ ( 𝜑 → ( ( 2 · ( ( 2 / 𝐸 ) / 𝐸 ) ) / 2 ) = ( ( 2 / 𝐸 ) / 𝐸 ) ) |
| 189 |
183 188
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2 / 𝐸 ) ↑ 2 ) / 2 ) = ( ( 2 / 𝐸 ) / 𝐸 ) ) |
| 190 |
73
|
resqcld |
⊢ ( 𝜑 → ( ( 2 / 𝐸 ) ↑ 2 ) ∈ ℝ ) |
| 191 |
190
|
rehalfcld |
⊢ ( 𝜑 → ( ( ( 2 / 𝐸 ) ↑ 2 ) / 2 ) ∈ ℝ ) |
| 192 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 193 |
|
rpaddcl |
⊢ ( ( 1 ∈ ℝ+ ∧ ( 2 / 𝐸 ) ∈ ℝ+ ) → ( 1 + ( 2 / 𝐸 ) ) ∈ ℝ+ ) |
| 194 |
192 175 193
|
sylancr |
⊢ ( 𝜑 → ( 1 + ( 2 / 𝐸 ) ) ∈ ℝ+ ) |
| 195 |
194
|
rpred |
⊢ ( 𝜑 → ( 1 + ( 2 / 𝐸 ) ) ∈ ℝ ) |
| 196 |
195 191
|
readdcld |
⊢ ( 𝜑 → ( ( 1 + ( 2 / 𝐸 ) ) + ( ( ( 2 / 𝐸 ) ↑ 2 ) / 2 ) ) ∈ ℝ ) |
| 197 |
191 194
|
ltaddrp2d |
⊢ ( 𝜑 → ( ( ( 2 / 𝐸 ) ↑ 2 ) / 2 ) < ( ( 1 + ( 2 / 𝐸 ) ) + ( ( ( 2 / 𝐸 ) ↑ 2 ) / 2 ) ) ) |
| 198 |
|
efgt1p2 |
⊢ ( ( 2 / 𝐸 ) ∈ ℝ+ → ( ( 1 + ( 2 / 𝐸 ) ) + ( ( ( 2 / 𝐸 ) ↑ 2 ) / 2 ) ) < ( exp ‘ ( 2 / 𝐸 ) ) ) |
| 199 |
175 198
|
syl |
⊢ ( 𝜑 → ( ( 1 + ( 2 / 𝐸 ) ) + ( ( ( 2 / 𝐸 ) ↑ 2 ) / 2 ) ) < ( exp ‘ ( 2 / 𝐸 ) ) ) |
| 200 |
199 3
|
breqtrrdi |
⊢ ( 𝜑 → ( ( 1 + ( 2 / 𝐸 ) ) + ( ( ( 2 / 𝐸 ) ↑ 2 ) / 2 ) ) < 𝑋 ) |
| 201 |
191 196 91 197 200
|
lttrd |
⊢ ( 𝜑 → ( ( ( 2 / 𝐸 ) ↑ 2 ) / 2 ) < 𝑋 ) |
| 202 |
189 201
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( 2 / 𝐸 ) / 𝐸 ) < 𝑋 ) |
| 203 |
73 71 90 202
|
ltdiv23d |
⊢ ( 𝜑 → ( ( 2 / 𝐸 ) / 𝑋 ) < 𝐸 ) |
| 204 |
172 203
|
eqbrtrd |
⊢ ( 𝜑 → ( ( log ‘ 𝑋 ) / 𝑋 ) < 𝐸 ) |
| 205 |
16 155 18 168 204
|
lttrd |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) / 𝑁 ) < 𝐸 ) |
| 206 |
16 18 205
|
ltled |
⊢ ( 𝜑 → ( ( log ‘ 𝑁 ) / 𝑁 ) ≤ 𝐸 ) |
| 207 |
14 16 18 153 206
|
letrd |
⊢ ( 𝜑 → ( abs ‘ ( ( 𝑅 ‘ 𝑁 ) / 𝑁 ) ) ≤ 𝐸 ) |