| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntpbnd.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
| 2 |
|
pntpbnd1.e |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 (,) 1 ) ) |
| 3 |
|
pntpbnd1.x |
⊢ 𝑋 = ( exp ‘ ( 2 / 𝐸 ) ) |
| 4 |
|
pntpbnd1.y |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑋 (,) +∞ ) ) |
| 5 |
|
pntpbnd1.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 6 |
|
pntpbnd1.2 |
⊢ ( 𝜑 → ∀ 𝑖 ∈ ℕ ∀ 𝑗 ∈ ℤ ( abs ‘ Σ 𝑦 ∈ ( 𝑖 ... 𝑗 ) ( ( 𝑅 ‘ 𝑦 ) / ( 𝑦 · ( 𝑦 + 1 ) ) ) ) ≤ 𝐴 ) |
| 7 |
|
pntpbnd1.c |
⊢ 𝐶 = ( 𝐴 + 2 ) |
| 8 |
|
pntpbnd1.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ) |
| 9 |
|
pntpbnd1.3 |
⊢ ( 𝜑 → ¬ ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) |
| 10 |
|
2div2e1 |
⊢ ( 2 / 2 ) = 1 |
| 11 |
|
2re |
⊢ 2 ∈ ℝ |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 13 |
|
ioossre |
⊢ ( 0 (,) 1 ) ⊆ ℝ |
| 14 |
13 2
|
sselid |
⊢ ( 𝜑 → 𝐸 ∈ ℝ ) |
| 15 |
|
eliooord |
⊢ ( 𝐸 ∈ ( 0 (,) 1 ) → ( 0 < 𝐸 ∧ 𝐸 < 1 ) ) |
| 16 |
2 15
|
syl |
⊢ ( 𝜑 → ( 0 < 𝐸 ∧ 𝐸 < 1 ) ) |
| 17 |
16
|
simpld |
⊢ ( 𝜑 → 0 < 𝐸 ) |
| 18 |
14 17
|
elrpd |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 19 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ+ ) |
| 21 |
7
|
oveq1i |
⊢ ( 𝐶 − 𝐴 ) = ( ( 𝐴 + 2 ) − 𝐴 ) |
| 22 |
5
|
rpcnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 23 |
|
2cn |
⊢ 2 ∈ ℂ |
| 24 |
|
pncan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 2 ∈ ℂ ) → ( ( 𝐴 + 2 ) − 𝐴 ) = 2 ) |
| 25 |
22 23 24
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐴 + 2 ) − 𝐴 ) = 2 ) |
| 26 |
21 25
|
eqtrid |
⊢ ( 𝜑 → ( 𝐶 − 𝐴 ) = 2 ) |
| 27 |
26
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐶 − 𝐴 ) / 𝐸 ) = ( 2 / 𝐸 ) ) |
| 28 |
|
rpaddcl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 2 ∈ ℝ+ ) → ( 𝐴 + 2 ) ∈ ℝ+ ) |
| 29 |
5 19 28
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 + 2 ) ∈ ℝ+ ) |
| 30 |
7 29
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 31 |
30
|
rpcnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 32 |
14
|
recnd |
⊢ ( 𝜑 → 𝐸 ∈ ℂ ) |
| 33 |
18
|
rpne0d |
⊢ ( 𝜑 → 𝐸 ≠ 0 ) |
| 34 |
31 22 32 33
|
divsubdird |
⊢ ( 𝜑 → ( ( 𝐶 − 𝐴 ) / 𝐸 ) = ( ( 𝐶 / 𝐸 ) − ( 𝐴 / 𝐸 ) ) ) |
| 35 |
27 34
|
eqtr3d |
⊢ ( 𝜑 → ( 2 / 𝐸 ) = ( ( 𝐶 / 𝐸 ) − ( 𝐴 / 𝐸 ) ) ) |
| 36 |
30 18
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐶 / 𝐸 ) ∈ ℝ+ ) |
| 37 |
36
|
rpred |
⊢ ( 𝜑 → ( 𝐶 / 𝐸 ) ∈ ℝ ) |
| 38 |
5
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 39 |
38 18
|
rerpdivcld |
⊢ ( 𝜑 → ( 𝐴 / 𝐸 ) ∈ ℝ ) |
| 40 |
|
resubcl |
⊢ ( ( ( 𝐶 / 𝐸 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( 𝐶 / 𝐸 ) − 2 ) ∈ ℝ ) |
| 41 |
37 11 40
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐶 / 𝐸 ) − 2 ) ∈ ℝ ) |
| 42 |
37
|
reefcld |
⊢ ( 𝜑 → ( exp ‘ ( 𝐶 / 𝐸 ) ) ∈ ℝ ) |
| 43 |
|
elicopnf |
⊢ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) ∈ ℝ → ( 𝐾 ∈ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ↔ ( 𝐾 ∈ ℝ ∧ ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ 𝐾 ) ) ) |
| 44 |
42 43
|
syl |
⊢ ( 𝜑 → ( 𝐾 ∈ ( ( exp ‘ ( 𝐶 / 𝐸 ) ) [,) +∞ ) ↔ ( 𝐾 ∈ ℝ ∧ ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ 𝐾 ) ) ) |
| 45 |
8 44
|
mpbid |
⊢ ( 𝜑 → ( 𝐾 ∈ ℝ ∧ ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ 𝐾 ) ) |
| 46 |
45
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 47 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 48 |
|
1re |
⊢ 1 ∈ ℝ |
| 49 |
48
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 50 |
|
0lt1 |
⊢ 0 < 1 |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 52 |
|
efgt1 |
⊢ ( ( 𝐶 / 𝐸 ) ∈ ℝ+ → 1 < ( exp ‘ ( 𝐶 / 𝐸 ) ) ) |
| 53 |
36 52
|
syl |
⊢ ( 𝜑 → 1 < ( exp ‘ ( 𝐶 / 𝐸 ) ) ) |
| 54 |
45
|
simprd |
⊢ ( 𝜑 → ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ 𝐾 ) |
| 55 |
49 42 46 53 54
|
ltletrd |
⊢ ( 𝜑 → 1 < 𝐾 ) |
| 56 |
47 49 46 51 55
|
lttrd |
⊢ ( 𝜑 → 0 < 𝐾 ) |
| 57 |
46 56
|
elrpd |
⊢ ( 𝜑 → 𝐾 ∈ ℝ+ ) |
| 58 |
57
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝐾 ) ∈ ℝ ) |
| 59 |
|
resubcl |
⊢ ( ( ( log ‘ 𝐾 ) ∈ ℝ ∧ 2 ∈ ℝ ) → ( ( log ‘ 𝐾 ) − 2 ) ∈ ℝ ) |
| 60 |
58 11 59
|
sylancl |
⊢ ( 𝜑 → ( ( log ‘ 𝐾 ) − 2 ) ∈ ℝ ) |
| 61 |
57
|
reeflogd |
⊢ ( 𝜑 → ( exp ‘ ( log ‘ 𝐾 ) ) = 𝐾 ) |
| 62 |
54 61
|
breqtrrd |
⊢ ( 𝜑 → ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ ( exp ‘ ( log ‘ 𝐾 ) ) ) |
| 63 |
|
efle |
⊢ ( ( ( 𝐶 / 𝐸 ) ∈ ℝ ∧ ( log ‘ 𝐾 ) ∈ ℝ ) → ( ( 𝐶 / 𝐸 ) ≤ ( log ‘ 𝐾 ) ↔ ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ ( exp ‘ ( log ‘ 𝐾 ) ) ) ) |
| 64 |
37 58 63
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐶 / 𝐸 ) ≤ ( log ‘ 𝐾 ) ↔ ( exp ‘ ( 𝐶 / 𝐸 ) ) ≤ ( exp ‘ ( log ‘ 𝐾 ) ) ) ) |
| 65 |
62 64
|
mpbird |
⊢ ( 𝜑 → ( 𝐶 / 𝐸 ) ≤ ( log ‘ 𝐾 ) ) |
| 66 |
37 58 12 65
|
lesub1dd |
⊢ ( 𝜑 → ( ( 𝐶 / 𝐸 ) − 2 ) ≤ ( ( log ‘ 𝐾 ) − 2 ) ) |
| 67 |
|
fzfid |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ∈ Fin ) |
| 68 |
|
ioossre |
⊢ ( 𝑋 (,) +∞ ) ⊆ ℝ |
| 69 |
68 4
|
sselid |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 70 |
|
rerpdivcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐸 ∈ ℝ+ ) → ( 2 / 𝐸 ) ∈ ℝ ) |
| 71 |
11 18 70
|
sylancr |
⊢ ( 𝜑 → ( 2 / 𝐸 ) ∈ ℝ ) |
| 72 |
71
|
reefcld |
⊢ ( 𝜑 → ( exp ‘ ( 2 / 𝐸 ) ) ∈ ℝ ) |
| 73 |
3 72
|
eqeltrid |
⊢ ( 𝜑 → 𝑋 ∈ ℝ ) |
| 74 |
|
efgt0 |
⊢ ( ( 2 / 𝐸 ) ∈ ℝ → 0 < ( exp ‘ ( 2 / 𝐸 ) ) ) |
| 75 |
71 74
|
syl |
⊢ ( 𝜑 → 0 < ( exp ‘ ( 2 / 𝐸 ) ) ) |
| 76 |
75 3
|
breqtrrdi |
⊢ ( 𝜑 → 0 < 𝑋 ) |
| 77 |
73
|
rexrd |
⊢ ( 𝜑 → 𝑋 ∈ ℝ* ) |
| 78 |
|
elioopnf |
⊢ ( 𝑋 ∈ ℝ* → ( 𝑌 ∈ ( 𝑋 (,) +∞ ) ↔ ( 𝑌 ∈ ℝ ∧ 𝑋 < 𝑌 ) ) ) |
| 79 |
77 78
|
syl |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑋 (,) +∞ ) ↔ ( 𝑌 ∈ ℝ ∧ 𝑋 < 𝑌 ) ) ) |
| 80 |
4 79
|
mpbid |
⊢ ( 𝜑 → ( 𝑌 ∈ ℝ ∧ 𝑋 < 𝑌 ) ) |
| 81 |
80
|
simprd |
⊢ ( 𝜑 → 𝑋 < 𝑌 ) |
| 82 |
47 73 69 76 81
|
lttrd |
⊢ ( 𝜑 → 0 < 𝑌 ) |
| 83 |
47 69 82
|
ltled |
⊢ ( 𝜑 → 0 ≤ 𝑌 ) |
| 84 |
|
flge0nn0 |
⊢ ( ( 𝑌 ∈ ℝ ∧ 0 ≤ 𝑌 ) → ( ⌊ ‘ 𝑌 ) ∈ ℕ0 ) |
| 85 |
69 83 84
|
syl2anc |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ∈ ℕ0 ) |
| 86 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ 𝑌 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ) |
| 87 |
85 86
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ) |
| 88 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) |
| 89 |
|
eluznn |
⊢ ( ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) → 𝑛 ∈ ℕ ) |
| 90 |
87 88 89
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑛 ∈ ℕ ) |
| 91 |
90
|
peano2nnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 92 |
91
|
nnrecred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 93 |
67 92
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 94 |
58
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝐾 ) ∈ ℂ ) |
| 95 |
|
2cnd |
⊢ ( 𝜑 → 2 ∈ ℂ ) |
| 96 |
69 82
|
elrpd |
⊢ ( 𝜑 → 𝑌 ∈ ℝ+ ) |
| 97 |
96
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑌 ) ∈ ℝ ) |
| 98 |
97
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝑌 ) ∈ ℂ ) |
| 99 |
94 95 98
|
pnpcan2d |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐾 ) + ( log ‘ 𝑌 ) ) − ( 2 + ( log ‘ 𝑌 ) ) ) = ( ( log ‘ 𝐾 ) − 2 ) ) |
| 100 |
57 96
|
relogmuld |
⊢ ( 𝜑 → ( log ‘ ( 𝐾 · 𝑌 ) ) = ( ( log ‘ 𝐾 ) + ( log ‘ 𝑌 ) ) ) |
| 101 |
58 97
|
readdcld |
⊢ ( 𝜑 → ( ( log ‘ 𝐾 ) + ( log ‘ 𝑌 ) ) ∈ ℝ ) |
| 102 |
100 101
|
eqeltrd |
⊢ ( 𝜑 → ( log ‘ ( 𝐾 · 𝑌 ) ) ∈ ℝ ) |
| 103 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( ⌊ ‘ 𝑌 ) ) ∈ Fin ) |
| 104 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) → 𝑛 ∈ ℕ0 ) |
| 105 |
104
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 106 |
|
nn0p1nn |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ ) |
| 107 |
105 106
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 108 |
107
|
nnrecred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) ) → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 109 |
103 108
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 110 |
109 93
|
readdcld |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1 / ( 𝑛 + 1 ) ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 111 |
|
readdcl |
⊢ ( ( 2 ∈ ℝ ∧ ( log ‘ 𝑌 ) ∈ ℝ ) → ( 2 + ( log ‘ 𝑌 ) ) ∈ ℝ ) |
| 112 |
11 97 111
|
sylancr |
⊢ ( 𝜑 → ( 2 + ( log ‘ 𝑌 ) ) ∈ ℝ ) |
| 113 |
112 93
|
readdcld |
⊢ ( 𝜑 → ( ( 2 + ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 114 |
46 69
|
remulcld |
⊢ ( 𝜑 → ( 𝐾 · 𝑌 ) ∈ ℝ ) |
| 115 |
69
|
recnd |
⊢ ( 𝜑 → 𝑌 ∈ ℂ ) |
| 116 |
115
|
mullidd |
⊢ ( 𝜑 → ( 1 · 𝑌 ) = 𝑌 ) |
| 117 |
49 46 55
|
ltled |
⊢ ( 𝜑 → 1 ≤ 𝐾 ) |
| 118 |
|
lemul1 |
⊢ ( ( 1 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ ( 𝑌 ∈ ℝ ∧ 0 < 𝑌 ) ) → ( 1 ≤ 𝐾 ↔ ( 1 · 𝑌 ) ≤ ( 𝐾 · 𝑌 ) ) ) |
| 119 |
49 46 69 82 118
|
syl112anc |
⊢ ( 𝜑 → ( 1 ≤ 𝐾 ↔ ( 1 · 𝑌 ) ≤ ( 𝐾 · 𝑌 ) ) ) |
| 120 |
117 119
|
mpbid |
⊢ ( 𝜑 → ( 1 · 𝑌 ) ≤ ( 𝐾 · 𝑌 ) ) |
| 121 |
116 120
|
eqbrtrrd |
⊢ ( 𝜑 → 𝑌 ≤ ( 𝐾 · 𝑌 ) ) |
| 122 |
47 69 114 83 121
|
letrd |
⊢ ( 𝜑 → 0 ≤ ( 𝐾 · 𝑌 ) ) |
| 123 |
|
flge0nn0 |
⊢ ( ( ( 𝐾 · 𝑌 ) ∈ ℝ ∧ 0 ≤ ( 𝐾 · 𝑌 ) ) → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℕ0 ) |
| 124 |
114 122 123
|
syl2anc |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℕ0 ) |
| 125 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ∈ ℕ ) |
| 126 |
124 125
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ∈ ℕ ) |
| 127 |
126
|
nnrpd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ∈ ℝ+ ) |
| 128 |
127
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ∈ ℝ ) |
| 129 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 130 |
114
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℤ ) |
| 131 |
130
|
peano2zd |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ∈ ℤ ) |
| 132 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) → 𝑘 ∈ ℕ ) |
| 133 |
132
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 134 |
|
nnrecre |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℝ ) |
| 135 |
134
|
recnd |
⊢ ( 𝑘 ∈ ℕ → ( 1 / 𝑘 ) ∈ ℂ ) |
| 136 |
133 135
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 137 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 1 / 𝑘 ) = ( 1 / ( 𝑛 + 1 ) ) ) |
| 138 |
129 129 131 136 137
|
fsumshftm |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) = Σ 𝑛 ∈ ( ( 1 − 1 ) ... ( ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) − 1 ) ) ( 1 / ( 𝑛 + 1 ) ) ) |
| 139 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 140 |
139
|
a1i |
⊢ ( 𝜑 → ( 1 − 1 ) = 0 ) |
| 141 |
130
|
zcnd |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℂ ) |
| 142 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 143 |
|
pncan |
⊢ ( ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) − 1 ) = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) |
| 144 |
141 142 143
|
sylancl |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) − 1 ) = ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) |
| 145 |
140 144
|
oveq12d |
⊢ ( 𝜑 → ( ( 1 − 1 ) ... ( ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) − 1 ) ) = ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 146 |
145
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( 1 − 1 ) ... ( ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) − 1 ) ) ( 1 / ( 𝑛 + 1 ) ) = Σ 𝑛 ∈ ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) |
| 147 |
|
reflcl |
⊢ ( 𝑌 ∈ ℝ → ( ⌊ ‘ 𝑌 ) ∈ ℝ ) |
| 148 |
69 147
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ∈ ℝ ) |
| 149 |
148
|
ltp1d |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) < ( ( ⌊ ‘ 𝑌 ) + 1 ) ) |
| 150 |
|
fzdisj |
⊢ ( ( ⌊ ‘ 𝑌 ) < ( ( ⌊ ‘ 𝑌 ) + 1 ) → ( ( 0 ... ( ⌊ ‘ 𝑌 ) ) ∩ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) = ∅ ) |
| 151 |
149 150
|
syl |
⊢ ( 𝜑 → ( ( 0 ... ( ⌊ ‘ 𝑌 ) ) ∩ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) = ∅ ) |
| 152 |
|
flwordi |
⊢ ( ( 𝑌 ∈ ℝ ∧ ( 𝐾 · 𝑌 ) ∈ ℝ ∧ 𝑌 ≤ ( 𝐾 · 𝑌 ) ) → ( ⌊ ‘ 𝑌 ) ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) |
| 153 |
69 114 121 152
|
syl3anc |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) |
| 154 |
|
elfz2nn0 |
⊢ ( ( ⌊ ‘ 𝑌 ) ∈ ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ↔ ( ( ⌊ ‘ 𝑌 ) ∈ ℕ0 ∧ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ∈ ℕ0 ∧ ( ⌊ ‘ 𝑌 ) ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 155 |
85 124 153 154
|
syl3anbrc |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ∈ ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 156 |
|
fzsplit |
⊢ ( ( ⌊ ‘ 𝑌 ) ∈ ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) = ( ( 0 ... ( ⌊ ‘ 𝑌 ) ) ∪ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) |
| 157 |
155 156
|
syl |
⊢ ( 𝜑 → ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) = ( ( 0 ... ( ⌊ ‘ 𝑌 ) ) ∪ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) ) |
| 158 |
|
fzfid |
⊢ ( 𝜑 → ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ∈ Fin ) |
| 159 |
|
elfznn0 |
⊢ ( 𝑛 ∈ ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑛 ∈ ℕ0 ) |
| 160 |
159
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑛 ∈ ℕ0 ) |
| 161 |
160 106
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 162 |
161
|
nnrecred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 163 |
162
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 1 / ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 164 |
151 157 158 163
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 0 ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) = ( Σ 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1 / ( 𝑛 + 1 ) ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 165 |
138 146 164
|
3eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) = ( Σ 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1 / ( 𝑛 + 1 ) ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 166 |
165 110
|
eqeltrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) ∈ ℝ ) |
| 167 |
|
fllep1 |
⊢ ( ( 𝐾 · 𝑌 ) ∈ ℝ → ( 𝐾 · 𝑌 ) ≤ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) |
| 168 |
114 167
|
syl |
⊢ ( 𝜑 → ( 𝐾 · 𝑌 ) ≤ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) |
| 169 |
57 96
|
rpmulcld |
⊢ ( 𝜑 → ( 𝐾 · 𝑌 ) ∈ ℝ+ ) |
| 170 |
169 127
|
logled |
⊢ ( 𝜑 → ( ( 𝐾 · 𝑌 ) ≤ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ↔ ( log ‘ ( 𝐾 · 𝑌 ) ) ≤ ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ) |
| 171 |
168 170
|
mpbid |
⊢ ( 𝜑 → ( log ‘ ( 𝐾 · 𝑌 ) ) ≤ ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) |
| 172 |
|
emre |
⊢ γ ∈ ℝ |
| 173 |
172
|
a1i |
⊢ ( 𝜑 → γ ∈ ℝ ) |
| 174 |
166 128
|
resubcld |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ∈ ℝ ) |
| 175 |
|
0re |
⊢ 0 ∈ ℝ |
| 176 |
|
emgt0 |
⊢ 0 < γ |
| 177 |
175 172 176
|
ltleii |
⊢ 0 ≤ γ |
| 178 |
177
|
a1i |
⊢ ( 𝜑 → 0 ≤ γ ) |
| 179 |
|
harmonicbnd |
⊢ ( ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ∈ ℕ → ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ∈ ( γ [,] 1 ) ) |
| 180 |
126 179
|
syl |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ∈ ( γ [,] 1 ) ) |
| 181 |
172 48
|
elicc2i |
⊢ ( ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ∈ ( γ [,] 1 ) ↔ ( ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ∈ ℝ ∧ γ ≤ ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ∧ ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ≤ 1 ) ) |
| 182 |
181
|
simp2bi |
⊢ ( ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ∈ ( γ [,] 1 ) → γ ≤ ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ) |
| 183 |
180 182
|
syl |
⊢ ( 𝜑 → γ ≤ ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ) |
| 184 |
47 173 174 178 183
|
letrd |
⊢ ( 𝜑 → 0 ≤ ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ) |
| 185 |
166 128
|
subge0d |
⊢ ( 𝜑 → ( 0 ≤ ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ) ↔ ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ≤ Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) ) ) |
| 186 |
184 185
|
mpbid |
⊢ ( 𝜑 → ( log ‘ ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ≤ Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) ) |
| 187 |
102 128 166 171 186
|
letrd |
⊢ ( 𝜑 → ( log ‘ ( 𝐾 · 𝑌 ) ) ≤ Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) + 1 ) ) ( 1 / 𝑘 ) ) |
| 188 |
187 165
|
breqtrd |
⊢ ( 𝜑 → ( log ‘ ( 𝐾 · 𝑌 ) ) ≤ ( Σ 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1 / ( 𝑛 + 1 ) ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 189 |
69
|
flcld |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ∈ ℤ ) |
| 190 |
189
|
peano2zd |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℤ ) |
| 191 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) → 𝑘 ∈ ℕ ) |
| 192 |
191
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 193 |
192 135
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) → ( 1 / 𝑘 ) ∈ ℂ ) |
| 194 |
129 129 190 193 137
|
fsumshftm |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) = Σ 𝑛 ∈ ( ( 1 − 1 ) ... ( ( ( ⌊ ‘ 𝑌 ) + 1 ) − 1 ) ) ( 1 / ( 𝑛 + 1 ) ) ) |
| 195 |
148
|
recnd |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ∈ ℂ ) |
| 196 |
|
pncan |
⊢ ( ( ( ⌊ ‘ 𝑌 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝑌 ) ) |
| 197 |
195 142 196
|
sylancl |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝑌 ) ) |
| 198 |
140 197
|
oveq12d |
⊢ ( 𝜑 → ( ( 1 − 1 ) ... ( ( ( ⌊ ‘ 𝑌 ) + 1 ) − 1 ) ) = ( 0 ... ( ⌊ ‘ 𝑌 ) ) ) |
| 199 |
198
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( 1 − 1 ) ... ( ( ( ⌊ ‘ 𝑌 ) + 1 ) − 1 ) ) ( 1 / ( 𝑛 + 1 ) ) = Σ 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1 / ( 𝑛 + 1 ) ) ) |
| 200 |
194 199
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) = Σ 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1 / ( 𝑛 + 1 ) ) ) |
| 201 |
200 109
|
eqeltrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) ∈ ℝ ) |
| 202 |
87
|
nnrpd |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℝ+ ) |
| 203 |
202
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ∈ ℝ ) |
| 204 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ∈ ℝ ) → ( 1 + ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ∈ ℝ ) |
| 205 |
48 203 204
|
sylancr |
⊢ ( 𝜑 → ( 1 + ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ∈ ℝ ) |
| 206 |
|
harmonicbnd |
⊢ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℕ → ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ∈ ( γ [,] 1 ) ) |
| 207 |
87 206
|
syl |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ∈ ( γ [,] 1 ) ) |
| 208 |
172 48
|
elicc2i |
⊢ ( ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ∈ ( γ [,] 1 ) ↔ ( ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ∈ ℝ ∧ γ ≤ ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ∧ ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ≤ 1 ) ) |
| 209 |
208
|
simp3bi |
⊢ ( ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ∈ ( γ [,] 1 ) → ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ≤ 1 ) |
| 210 |
207 209
|
syl |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ≤ 1 ) |
| 211 |
201 203 49
|
lesubaddd |
⊢ ( 𝜑 → ( ( Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) − ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ≤ 1 ↔ Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) ≤ ( 1 + ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ) ) |
| 212 |
210 211
|
mpbid |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) ≤ ( 1 + ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ) |
| 213 |
|
readdcl |
⊢ ( ( 1 ∈ ℝ ∧ ( log ‘ 𝑌 ) ∈ ℝ ) → ( 1 + ( log ‘ 𝑌 ) ) ∈ ℝ ) |
| 214 |
48 97 213
|
sylancr |
⊢ ( 𝜑 → ( 1 + ( log ‘ 𝑌 ) ) ∈ ℝ ) |
| 215 |
|
peano2re |
⊢ ( ( ⌊ ‘ 𝑌 ) ∈ ℝ → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℝ ) |
| 216 |
148 215
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ∈ ℝ ) |
| 217 |
12 69
|
remulcld |
⊢ ( 𝜑 → ( 2 · 𝑌 ) ∈ ℝ ) |
| 218 |
|
epr |
⊢ e ∈ ℝ+ |
| 219 |
|
rpmulcl |
⊢ ( ( e ∈ ℝ+ ∧ 𝑌 ∈ ℝ+ ) → ( e · 𝑌 ) ∈ ℝ+ ) |
| 220 |
218 96 219
|
sylancr |
⊢ ( 𝜑 → ( e · 𝑌 ) ∈ ℝ+ ) |
| 221 |
220
|
rpred |
⊢ ( 𝜑 → ( e · 𝑌 ) ∈ ℝ ) |
| 222 |
|
flle |
⊢ ( 𝑌 ∈ ℝ → ( ⌊ ‘ 𝑌 ) ≤ 𝑌 ) |
| 223 |
69 222
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ 𝑌 ) ≤ 𝑌 ) |
| 224 |
20 18
|
rpdivcld |
⊢ ( 𝜑 → ( 2 / 𝐸 ) ∈ ℝ+ ) |
| 225 |
|
efgt1 |
⊢ ( ( 2 / 𝐸 ) ∈ ℝ+ → 1 < ( exp ‘ ( 2 / 𝐸 ) ) ) |
| 226 |
224 225
|
syl |
⊢ ( 𝜑 → 1 < ( exp ‘ ( 2 / 𝐸 ) ) ) |
| 227 |
226 3
|
breqtrrdi |
⊢ ( 𝜑 → 1 < 𝑋 ) |
| 228 |
49 73 69 227 81
|
lttrd |
⊢ ( 𝜑 → 1 < 𝑌 ) |
| 229 |
49 69 228
|
ltled |
⊢ ( 𝜑 → 1 ≤ 𝑌 ) |
| 230 |
148 49 69 69 223 229
|
le2addd |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ ( 𝑌 + 𝑌 ) ) |
| 231 |
115
|
2timesd |
⊢ ( 𝜑 → ( 2 · 𝑌 ) = ( 𝑌 + 𝑌 ) ) |
| 232 |
230 231
|
breqtrrd |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ ( 2 · 𝑌 ) ) |
| 233 |
|
ere |
⊢ e ∈ ℝ |
| 234 |
|
egt2lt3 |
⊢ ( 2 < e ∧ e < 3 ) |
| 235 |
234
|
simpli |
⊢ 2 < e |
| 236 |
11 233 235
|
ltleii |
⊢ 2 ≤ e |
| 237 |
236
|
a1i |
⊢ ( 𝜑 → 2 ≤ e ) |
| 238 |
233
|
a1i |
⊢ ( 𝜑 → e ∈ ℝ ) |
| 239 |
|
lemul1 |
⊢ ( ( 2 ∈ ℝ ∧ e ∈ ℝ ∧ ( 𝑌 ∈ ℝ ∧ 0 < 𝑌 ) ) → ( 2 ≤ e ↔ ( 2 · 𝑌 ) ≤ ( e · 𝑌 ) ) ) |
| 240 |
12 238 69 82 239
|
syl112anc |
⊢ ( 𝜑 → ( 2 ≤ e ↔ ( 2 · 𝑌 ) ≤ ( e · 𝑌 ) ) ) |
| 241 |
237 240
|
mpbid |
⊢ ( 𝜑 → ( 2 · 𝑌 ) ≤ ( e · 𝑌 ) ) |
| 242 |
216 217 221 232 241
|
letrd |
⊢ ( 𝜑 → ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ ( e · 𝑌 ) ) |
| 243 |
202 220
|
logled |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ ( e · 𝑌 ) ↔ ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ ( log ‘ ( e · 𝑌 ) ) ) ) |
| 244 |
242 243
|
mpbid |
⊢ ( 𝜑 → ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ ( log ‘ ( e · 𝑌 ) ) ) |
| 245 |
|
relogmul |
⊢ ( ( e ∈ ℝ+ ∧ 𝑌 ∈ ℝ+ ) → ( log ‘ ( e · 𝑌 ) ) = ( ( log ‘ e ) + ( log ‘ 𝑌 ) ) ) |
| 246 |
218 96 245
|
sylancr |
⊢ ( 𝜑 → ( log ‘ ( e · 𝑌 ) ) = ( ( log ‘ e ) + ( log ‘ 𝑌 ) ) ) |
| 247 |
|
loge |
⊢ ( log ‘ e ) = 1 |
| 248 |
247
|
oveq1i |
⊢ ( ( log ‘ e ) + ( log ‘ 𝑌 ) ) = ( 1 + ( log ‘ 𝑌 ) ) |
| 249 |
246 248
|
eqtrdi |
⊢ ( 𝜑 → ( log ‘ ( e · 𝑌 ) ) = ( 1 + ( log ‘ 𝑌 ) ) ) |
| 250 |
244 249
|
breqtrd |
⊢ ( 𝜑 → ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ≤ ( 1 + ( log ‘ 𝑌 ) ) ) |
| 251 |
203 214 49 250
|
leadd2dd |
⊢ ( 𝜑 → ( 1 + ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ≤ ( 1 + ( 1 + ( log ‘ 𝑌 ) ) ) ) |
| 252 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
| 253 |
252
|
oveq1i |
⊢ ( 2 + ( log ‘ 𝑌 ) ) = ( ( 1 + 1 ) + ( log ‘ 𝑌 ) ) |
| 254 |
142
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 255 |
254 254 98
|
addassd |
⊢ ( 𝜑 → ( ( 1 + 1 ) + ( log ‘ 𝑌 ) ) = ( 1 + ( 1 + ( log ‘ 𝑌 ) ) ) ) |
| 256 |
253 255
|
eqtrid |
⊢ ( 𝜑 → ( 2 + ( log ‘ 𝑌 ) ) = ( 1 + ( 1 + ( log ‘ 𝑌 ) ) ) ) |
| 257 |
251 256
|
breqtrrd |
⊢ ( 𝜑 → ( 1 + ( log ‘ ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ) ≤ ( 2 + ( log ‘ 𝑌 ) ) ) |
| 258 |
201 205 112 212 257
|
letrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... ( ( ⌊ ‘ 𝑌 ) + 1 ) ) ( 1 / 𝑘 ) ≤ ( 2 + ( log ‘ 𝑌 ) ) ) |
| 259 |
200 258
|
eqbrtrrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1 / ( 𝑛 + 1 ) ) ≤ ( 2 + ( log ‘ 𝑌 ) ) ) |
| 260 |
109 112 93 259
|
leadd1dd |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 0 ... ( ⌊ ‘ 𝑌 ) ) ( 1 / ( 𝑛 + 1 ) ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) ≤ ( ( 2 + ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 261 |
102 110 113 188 260
|
letrd |
⊢ ( 𝜑 → ( log ‘ ( 𝐾 · 𝑌 ) ) ≤ ( ( 2 + ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 262 |
100 261
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( log ‘ 𝐾 ) + ( log ‘ 𝑌 ) ) ≤ ( ( 2 + ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 263 |
101 112 93
|
lesubadd2d |
⊢ ( 𝜑 → ( ( ( ( log ‘ 𝐾 ) + ( log ‘ 𝑌 ) ) − ( 2 + ( log ‘ 𝑌 ) ) ) ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ↔ ( ( log ‘ 𝐾 ) + ( log ‘ 𝑌 ) ) ≤ ( ( 2 + ( log ‘ 𝑌 ) ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) ) ) |
| 264 |
262 263
|
mpbird |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐾 ) + ( log ‘ 𝑌 ) ) − ( 2 + ( log ‘ 𝑌 ) ) ) ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) |
| 265 |
99 264
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( log ‘ 𝐾 ) − 2 ) ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) |
| 266 |
92
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 1 / ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 267 |
67 32 266
|
fsummulc2 |
⊢ ( 𝜑 → ( 𝐸 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝐸 · ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 268 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝐸 ∈ ℝ ) |
| 269 |
268
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝐸 ∈ ℂ ) |
| 270 |
91
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℂ ) |
| 271 |
91
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 + 1 ) ≠ 0 ) |
| 272 |
269 270 271
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝐸 / ( 𝑛 + 1 ) ) = ( 𝐸 · ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 273 |
268 91
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝐸 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 274 |
272 273
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝐸 · ( 1 / ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 275 |
67 274
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝐸 · ( 1 / ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 276 |
90
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑛 ∈ ℝ+ ) |
| 277 |
1
|
pntrf |
⊢ 𝑅 : ℝ+ ⟶ ℝ |
| 278 |
277
|
ffvelcdmi |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 279 |
276 278
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 280 |
90 91
|
nnmulcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 281 |
279 280
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 282 |
281
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 283 |
282
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 284 |
67 283
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 285 |
279 90
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 286 |
285
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 287 |
286
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ∈ ℝ ) |
| 288 |
91
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 + 1 ) ∈ ℝ+ ) |
| 289 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ¬ ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) |
| 290 |
|
elfzle1 |
⊢ ( 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ 𝑛 ) |
| 291 |
290
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ 𝑛 ) |
| 292 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑌 ∈ ℝ ) |
| 293 |
292
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ⌊ ‘ 𝑌 ) ∈ ℤ ) |
| 294 |
90
|
nnzd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑛 ∈ ℤ ) |
| 295 |
|
zltp1le |
⊢ ( ( ( ⌊ ‘ 𝑌 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ⌊ ‘ 𝑌 ) < 𝑛 ↔ ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ 𝑛 ) ) |
| 296 |
293 294 295
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ⌊ ‘ 𝑌 ) < 𝑛 ↔ ( ( ⌊ ‘ 𝑌 ) + 1 ) ≤ 𝑛 ) ) |
| 297 |
291 296
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ⌊ ‘ 𝑌 ) < 𝑛 ) |
| 298 |
|
fllt |
⊢ ( ( 𝑌 ∈ ℝ ∧ 𝑛 ∈ ℤ ) → ( 𝑌 < 𝑛 ↔ ( ⌊ ‘ 𝑌 ) < 𝑛 ) ) |
| 299 |
292 294 298
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑌 < 𝑛 ↔ ( ⌊ ‘ 𝑌 ) < 𝑛 ) ) |
| 300 |
297 299
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑌 < 𝑛 ) |
| 301 |
|
elfzle2 |
⊢ ( 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) → 𝑛 ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) |
| 302 |
301
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑛 ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) |
| 303 |
114
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝐾 · 𝑌 ) ∈ ℝ ) |
| 304 |
|
flge |
⊢ ( ( ( 𝐾 · 𝑌 ) ∈ ℝ ∧ 𝑛 ∈ ℤ ) → ( 𝑛 ≤ ( 𝐾 · 𝑌 ) ↔ 𝑛 ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 305 |
303 294 304
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑛 ≤ ( 𝐾 · 𝑌 ) ↔ 𝑛 ≤ ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) |
| 306 |
302 305
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑛 ≤ ( 𝐾 · 𝑌 ) ) |
| 307 |
|
breq2 |
⊢ ( 𝑦 = 𝑛 → ( 𝑌 < 𝑦 ↔ 𝑌 < 𝑛 ) ) |
| 308 |
|
breq1 |
⊢ ( 𝑦 = 𝑛 → ( 𝑦 ≤ ( 𝐾 · 𝑌 ) ↔ 𝑛 ≤ ( 𝐾 · 𝑌 ) ) ) |
| 309 |
307 308
|
anbi12d |
⊢ ( 𝑦 = 𝑛 → ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ↔ ( 𝑌 < 𝑛 ∧ 𝑛 ≤ ( 𝐾 · 𝑌 ) ) ) ) |
| 310 |
|
fveq2 |
⊢ ( 𝑦 = 𝑛 → ( 𝑅 ‘ 𝑦 ) = ( 𝑅 ‘ 𝑛 ) ) |
| 311 |
|
id |
⊢ ( 𝑦 = 𝑛 → 𝑦 = 𝑛 ) |
| 312 |
310 311
|
oveq12d |
⊢ ( 𝑦 = 𝑛 → ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) = ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) |
| 313 |
312
|
fveq2d |
⊢ ( 𝑦 = 𝑛 → ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) = ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ) |
| 314 |
313
|
breq1d |
⊢ ( 𝑦 = 𝑛 → ( ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ↔ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝐸 ) ) |
| 315 |
309 314
|
anbi12d |
⊢ ( 𝑦 = 𝑛 → ( ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ↔ ( ( 𝑌 < 𝑛 ∧ 𝑛 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝐸 ) ) ) |
| 316 |
315
|
rspcev |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( ( 𝑌 < 𝑛 ∧ 𝑛 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝐸 ) ) → ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) |
| 317 |
316
|
expr |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑌 < 𝑛 ∧ 𝑛 ≤ ( 𝐾 · 𝑌 ) ) ) → ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝐸 → ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) ) |
| 318 |
90 300 306 317
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝐸 → ∃ 𝑦 ∈ ℕ ( ( 𝑌 < 𝑦 ∧ 𝑦 ≤ ( 𝐾 · 𝑌 ) ) ∧ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐸 ) ) ) |
| 319 |
289 318
|
mtod |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ¬ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝐸 ) |
| 320 |
287 268
|
letrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝐸 ∨ 𝐸 ≤ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ) ) |
| 321 |
320
|
ord |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ¬ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ≤ 𝐸 → 𝐸 ≤ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ) ) |
| 322 |
319 321
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝐸 ≤ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) ) |
| 323 |
268 287 288 322
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝐸 / ( 𝑛 + 1 ) ) ≤ ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) / ( 𝑛 + 1 ) ) ) |
| 324 |
286 270 271
|
absdivd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( abs ‘ ( ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) / ( 𝑛 + 1 ) ) ) = ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) / ( abs ‘ ( 𝑛 + 1 ) ) ) ) |
| 325 |
279
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝑅 ‘ 𝑛 ) ∈ ℂ ) |
| 326 |
90
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑛 ∈ ℂ ) |
| 327 |
90
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → 𝑛 ≠ 0 ) |
| 328 |
325 326 270 327 271
|
divdiv1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) / ( 𝑛 + 1 ) ) = ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 329 |
328
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( abs ‘ ( ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) / ( 𝑛 + 1 ) ) ) = ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 330 |
288
|
rprege0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( 𝑛 + 1 ) ∈ ℝ ∧ 0 ≤ ( 𝑛 + 1 ) ) ) |
| 331 |
|
absid |
⊢ ( ( ( 𝑛 + 1 ) ∈ ℝ ∧ 0 ≤ ( 𝑛 + 1 ) ) → ( abs ‘ ( 𝑛 + 1 ) ) = ( 𝑛 + 1 ) ) |
| 332 |
330 331
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( abs ‘ ( 𝑛 + 1 ) ) = ( 𝑛 + 1 ) ) |
| 333 |
332
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) / ( abs ‘ ( 𝑛 + 1 ) ) ) = ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) / ( 𝑛 + 1 ) ) ) |
| 334 |
324 329 333
|
3eqtr3rd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / 𝑛 ) ) / ( 𝑛 + 1 ) ) = ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 335 |
323 272 334
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ) → ( 𝐸 · ( 1 / ( 𝑛 + 1 ) ) ) ≤ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 336 |
67 274 283 335
|
fsumle |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝐸 · ( 1 / ( 𝑛 + 1 ) ) ) ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 337 |
1 2 3 4 5 6 7 8 9
|
pntpbnd1 |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝐴 ) |
| 338 |
275 284 38 336 337
|
letrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 𝐸 · ( 1 / ( 𝑛 + 1 ) ) ) ≤ 𝐴 ) |
| 339 |
267 338
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐸 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) ≤ 𝐴 ) |
| 340 |
93 38 18
|
lemuldiv2d |
⊢ ( 𝜑 → ( ( 𝐸 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ) ≤ 𝐴 ↔ Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ≤ ( 𝐴 / 𝐸 ) ) ) |
| 341 |
339 340
|
mpbid |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ 𝑌 ) + 1 ) ... ( ⌊ ‘ ( 𝐾 · 𝑌 ) ) ) ( 1 / ( 𝑛 + 1 ) ) ≤ ( 𝐴 / 𝐸 ) ) |
| 342 |
60 93 39 265 341
|
letrd |
⊢ ( 𝜑 → ( ( log ‘ 𝐾 ) − 2 ) ≤ ( 𝐴 / 𝐸 ) ) |
| 343 |
41 60 39 66 342
|
letrd |
⊢ ( 𝜑 → ( ( 𝐶 / 𝐸 ) − 2 ) ≤ ( 𝐴 / 𝐸 ) ) |
| 344 |
37 12 39 343
|
subled |
⊢ ( 𝜑 → ( ( 𝐶 / 𝐸 ) − ( 𝐴 / 𝐸 ) ) ≤ 2 ) |
| 345 |
35 344
|
eqbrtrd |
⊢ ( 𝜑 → ( 2 / 𝐸 ) ≤ 2 ) |
| 346 |
12 18 20 345
|
lediv23d |
⊢ ( 𝜑 → ( 2 / 2 ) ≤ 𝐸 ) |
| 347 |
10 346
|
eqbrtrrid |
⊢ ( 𝜑 → 1 ≤ 𝐸 ) |
| 348 |
16
|
simprd |
⊢ ( 𝜑 → 𝐸 < 1 ) |
| 349 |
|
ltnle |
⊢ ( ( 𝐸 ∈ ℝ ∧ 1 ∈ ℝ ) → ( 𝐸 < 1 ↔ ¬ 1 ≤ 𝐸 ) ) |
| 350 |
14 48 349
|
sylancl |
⊢ ( 𝜑 → ( 𝐸 < 1 ↔ ¬ 1 ≤ 𝐸 ) ) |
| 351 |
348 350
|
mpbid |
⊢ ( 𝜑 → ¬ 1 ≤ 𝐸 ) |
| 352 |
347 351
|
pm2.65i |
⊢ ¬ 𝜑 |