Metamath Proof Explorer


Theorem pntrf

Description: Functionality of the residual. Lemma for pnt . (Contributed by Mario Carneiro, 8-Apr-2016)

Ref Expression
Hypothesis pntrval.r 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) )
Assertion pntrf 𝑅 : ℝ+ ⟶ ℝ

Proof

Step Hyp Ref Expression
1 pntrval.r 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) )
2 rpre ( 𝑎 ∈ ℝ+𝑎 ∈ ℝ )
3 chpcl ( 𝑎 ∈ ℝ → ( ψ ‘ 𝑎 ) ∈ ℝ )
4 2 3 syl ( 𝑎 ∈ ℝ+ → ( ψ ‘ 𝑎 ) ∈ ℝ )
5 4 2 resubcld ( 𝑎 ∈ ℝ+ → ( ( ψ ‘ 𝑎 ) − 𝑎 ) ∈ ℝ )
6 1 5 fmpti 𝑅 : ℝ+ ⟶ ℝ