Description: Functionality of the residual. Lemma for pnt . (Contributed by Mario Carneiro, 8-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pntrval.r | ⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) | |
Assertion | pntrf | ⊢ 𝑅 : ℝ+ ⟶ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pntrval.r | ⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) | |
2 | rpre | ⊢ ( 𝑎 ∈ ℝ+ → 𝑎 ∈ ℝ ) | |
3 | chpcl | ⊢ ( 𝑎 ∈ ℝ → ( ψ ‘ 𝑎 ) ∈ ℝ ) | |
4 | 2 3 | syl | ⊢ ( 𝑎 ∈ ℝ+ → ( ψ ‘ 𝑎 ) ∈ ℝ ) |
5 | 4 2 | resubcld | ⊢ ( 𝑎 ∈ ℝ+ → ( ( ψ ‘ 𝑎 ) − 𝑎 ) ∈ ℝ ) |
6 | 1 5 | fmpti | ⊢ 𝑅 : ℝ+ ⟶ ℝ |