| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntsval.1 |
⊢ 𝑆 = ( 𝑎 ∈ ℝ ↦ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) ) |
| 2 |
|
pntrlog2bnd.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
| 3 |
|
pntrlog2bnd.t |
⊢ 𝑇 = ( 𝑎 ∈ ℝ ↦ if ( 𝑎 ∈ ℝ+ , ( 𝑎 · ( log ‘ 𝑎 ) ) , 0 ) ) |
| 4 |
|
pntrlog2bndlem5.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 5 |
|
pntrlog2bndlem5.2 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐵 ) |
| 6 |
|
pntrlog2bndlem6.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 7 |
|
pntrlog2bndlem6.2 |
⊢ ( 𝜑 → 1 ≤ 𝐴 ) |
| 8 |
|
elioore |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ ) |
| 10 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 11 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ+ ) |
| 12 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ ) |
| 13 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 15 |
14
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 < 𝑥 ) |
| 16 |
12 9 15
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ≤ 𝑥 ) |
| 17 |
9 11 16
|
rpgecld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ+ ) |
| 18 |
2
|
pntrf |
⊢ 𝑅 : ℝ+ ⟶ ℝ |
| 19 |
18
|
ffvelcdmi |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑅 ‘ 𝑥 ) ∈ ℝ ) |
| 20 |
17 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑅 ‘ 𝑥 ) ∈ ℝ ) |
| 21 |
20
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑅 ‘ 𝑥 ) ∈ ℂ ) |
| 22 |
21
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) ∈ ℝ ) |
| 23 |
17
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 24 |
22 23
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 25 |
|
2re |
⊢ 2 ∈ ℝ |
| 26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 2 ∈ ℝ ) |
| 27 |
9 15
|
rplogcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
| 28 |
26 27
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 29 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 30 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ+ ) |
| 31 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
| 32 |
31
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 33 |
32
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 34 |
30 33
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 35 |
18
|
ffvelcdmi |
⊢ ( ( 𝑥 / 𝑛 ) ∈ ℝ+ → ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 36 |
34 35
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 37 |
36
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
| 38 |
37
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
| 39 |
33
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
| 40 |
38 39
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℝ ) |
| 41 |
29 40
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℝ ) |
| 42 |
28 41
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 43 |
24 42
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) ∈ ℝ ) |
| 44 |
43
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) ∈ ℂ ) |
| 45 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 46 |
|
ssun2 |
⊢ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) |
| 47 |
1 2 3 4 5 6 7
|
pntrlog2bndlem6a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ) |
| 48 |
46 47
|
sseqtrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 49 |
48
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 50 |
49 40
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℝ ) |
| 51 |
45 50
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℝ ) |
| 52 |
28 51
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ∈ ℝ ) |
| 53 |
52
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 54 |
9
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℂ ) |
| 55 |
17
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ≠ 0 ) |
| 56 |
44 53 54 55
|
divdird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) = ( ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) + ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) / 𝑥 ) ) ) |
| 57 |
24
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 58 |
42
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ∈ ℂ ) |
| 59 |
57 58 53
|
subsubd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) ) = ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) ) |
| 60 |
28
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 / ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 61 |
41
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℂ ) |
| 62 |
51
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℂ ) |
| 63 |
60 61 62
|
subdid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) = ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) ) |
| 64 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ∈ Fin ) |
| 65 |
|
ssun1 |
⊢ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) |
| 66 |
65 47
|
sseqtrrid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 67 |
66
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 68 |
67 40
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ) → ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℝ ) |
| 69 |
64 68
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℝ ) |
| 70 |
69
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℂ ) |
| 71 |
10
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 72 |
6 71 7
|
rpgecld |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℝ+ ) |
| 74 |
9 73
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 / 𝐴 ) ∈ ℝ ) |
| 75 |
|
reflcl |
⊢ ( ( 𝑥 / 𝐴 ) ∈ ℝ → ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ∈ ℝ ) |
| 76 |
74 75
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ∈ ℝ ) |
| 77 |
76
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) < ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ) |
| 78 |
|
fzdisj |
⊢ ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) < ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) → ( ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) = ∅ ) |
| 79 |
77 78
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) = ∅ ) |
| 80 |
40
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℂ ) |
| 81 |
79 47 29 80
|
fsumsplit |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) |
| 82 |
70 62 81
|
mvrraddd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) |
| 83 |
82
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) − Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) = ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) |
| 84 |
63 83
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) = ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) |
| 85 |
84
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) ) = ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) ) |
| 86 |
59 85
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) = ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) ) |
| 87 |
86
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) + ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) = ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ) |
| 88 |
56 87
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) + ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) / 𝑥 ) ) = ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ) |
| 89 |
88
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) + ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) / 𝑥 ) ) ) = ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ) ) |
| 90 |
43 17
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ∈ ℝ ) |
| 91 |
52 17
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) / 𝑥 ) ∈ ℝ ) |
| 92 |
1 2 3 4 5
|
pntrlog2bndlem5 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ) ∈ ≤𝑂(1) ) |
| 93 |
|
ioossre |
⊢ ( 1 (,) +∞ ) ⊆ ℝ |
| 94 |
93
|
a1i |
⊢ ( 𝜑 → ( 1 (,) +∞ ) ⊆ ℝ ) |
| 95 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 96 |
25
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 97 |
4
|
rpred |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 98 |
72
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 99 |
98 95
|
readdcld |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 100 |
97 99
|
remulcld |
⊢ ( 𝜑 → ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ∈ ℝ ) |
| 101 |
96 100
|
remulcld |
⊢ ( 𝜑 → ( 2 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ∈ ℝ ) |
| 102 |
51 27
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 103 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐵 ∈ ℝ ) |
| 104 |
73
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 105 |
104 12
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 106 |
103 105
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ∈ ℝ ) |
| 107 |
9 106
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ∈ ℝ ) |
| 108 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 109 |
108
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 2 ∈ ℝ+ ) |
| 110 |
109
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ 2 ) |
| 111 |
103 9
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐵 · 𝑥 ) ∈ ℝ ) |
| 112 |
49 31
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 113 |
112
|
nnrecred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 114 |
45 113
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 115 |
111 114
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝐵 · 𝑥 ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 116 |
27
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑥 ) ∈ ℝ+ ) |
| 117 |
50 116
|
rerpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 118 |
103
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐵 ∈ ℝ ) |
| 119 |
9
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
| 120 |
118 119
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐵 · 𝑥 ) ∈ ℝ ) |
| 121 |
120 113
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝐵 · 𝑥 ) · ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 122 |
49 38
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) ∈ ℝ ) |
| 123 |
119 112
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ ) |
| 124 |
118 123
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐵 · ( 𝑥 / 𝑛 ) ) ∈ ℝ ) |
| 125 |
49 33
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 126 |
125
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ∈ ℝ ) |
| 127 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ+ ) |
| 128 |
127
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 129 |
49 37
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ∈ ℂ ) |
| 130 |
129
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) ) |
| 131 |
|
elfzle2 |
⊢ ( 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ≤ ( ⌊ ‘ 𝑥 ) ) |
| 132 |
131
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≤ ( ⌊ ‘ 𝑥 ) ) |
| 133 |
112
|
nnzd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℤ ) |
| 134 |
|
flge |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ℤ ) → ( 𝑛 ≤ 𝑥 ↔ 𝑛 ≤ ( ⌊ ‘ 𝑥 ) ) ) |
| 135 |
119 133 134
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 ≤ 𝑥 ↔ 𝑛 ≤ ( ⌊ ‘ 𝑥 ) ) ) |
| 136 |
132 135
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≤ 𝑥 ) |
| 137 |
125 127
|
logled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 ≤ 𝑥 ↔ ( log ‘ 𝑛 ) ≤ ( log ‘ 𝑥 ) ) ) |
| 138 |
136 137
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 𝑛 ) ≤ ( log ‘ 𝑥 ) ) |
| 139 |
126 128 122 130 138
|
lemul2ad |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) |
| 140 |
50 122 116
|
ledivmul2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ≤ ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) ↔ ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ≤ ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑥 ) ) ) ) |
| 141 |
139 140
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ≤ ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) ) |
| 142 |
123
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℂ ) |
| 143 |
49 34
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ∈ ℝ+ ) |
| 144 |
143
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑛 ) ≠ 0 ) |
| 145 |
129 142 144
|
absdivd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) / ( 𝑥 / 𝑛 ) ) ) = ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) / ( abs ‘ ( 𝑥 / 𝑛 ) ) ) ) |
| 146 |
17
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ 𝑥 ) |
| 147 |
146
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ 𝑥 ) |
| 148 |
119 125 147
|
divge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( 𝑥 / 𝑛 ) ) |
| 149 |
123 148
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑥 / 𝑛 ) ) = ( 𝑥 / 𝑛 ) ) |
| 150 |
149
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) / ( abs ‘ ( 𝑥 / 𝑛 ) ) ) = ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) / ( 𝑥 / 𝑛 ) ) ) |
| 151 |
145 150
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) / ( 𝑥 / 𝑛 ) ) ) = ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) / ( 𝑥 / 𝑛 ) ) ) |
| 152 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( 𝑅 ‘ 𝑦 ) = ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) |
| 153 |
|
id |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → 𝑦 = ( 𝑥 / 𝑛 ) ) |
| 154 |
152 153
|
oveq12d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) = ( ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) / ( 𝑥 / 𝑛 ) ) ) |
| 155 |
154
|
fveq2d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) = ( abs ‘ ( ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) / ( 𝑥 / 𝑛 ) ) ) ) |
| 156 |
155
|
breq1d |
⊢ ( 𝑦 = ( 𝑥 / 𝑛 ) → ( ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐵 ↔ ( abs ‘ ( ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) / ( 𝑥 / 𝑛 ) ) ) ≤ 𝐵 ) ) |
| 157 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ ℝ+ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐵 ) |
| 158 |
156 157 143
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) / ( 𝑥 / 𝑛 ) ) ) ≤ 𝐵 ) |
| 159 |
151 158
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) / ( 𝑥 / 𝑛 ) ) ≤ 𝐵 ) |
| 160 |
122 118 143
|
ledivmul2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) / ( 𝑥 / 𝑛 ) ) ≤ 𝐵 ↔ ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) ≤ ( 𝐵 · ( 𝑥 / 𝑛 ) ) ) ) |
| 161 |
159 160
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) ≤ ( 𝐵 · ( 𝑥 / 𝑛 ) ) ) |
| 162 |
117 122 124 141 161
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ≤ ( 𝐵 · ( 𝑥 / 𝑛 ) ) ) |
| 163 |
118
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐵 ∈ ℂ ) |
| 164 |
54
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℂ ) |
| 165 |
112
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
| 166 |
112
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≠ 0 ) |
| 167 |
163 164 165 166
|
divassd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝐵 · 𝑥 ) / 𝑛 ) = ( 𝐵 · ( 𝑥 / 𝑛 ) ) ) |
| 168 |
163 164
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐵 · 𝑥 ) ∈ ℂ ) |
| 169 |
168 165 166
|
divrecd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝐵 · 𝑥 ) / 𝑛 ) = ( ( 𝐵 · 𝑥 ) · ( 1 / 𝑛 ) ) ) |
| 170 |
167 169
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐵 · ( 𝑥 / 𝑛 ) ) = ( ( 𝐵 · 𝑥 ) · ( 1 / 𝑛 ) ) ) |
| 171 |
162 170
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ≤ ( ( 𝐵 · 𝑥 ) · ( 1 / 𝑛 ) ) ) |
| 172 |
45 117 121 171
|
fsumle |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝐵 · 𝑥 ) · ( 1 / 𝑛 ) ) ) |
| 173 |
23
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 174 |
49 80
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ∈ ℂ ) |
| 175 |
27
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝑥 ) ≠ 0 ) |
| 176 |
45 173 174 175
|
fsumdivc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) |
| 177 |
103
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐵 ∈ ℂ ) |
| 178 |
177 54
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐵 · 𝑥 ) ∈ ℂ ) |
| 179 |
113
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 180 |
45 178 179
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝐵 · 𝑥 ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝐵 · 𝑥 ) · ( 1 / 𝑛 ) ) ) |
| 181 |
172 176 180
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ≤ ( ( 𝐵 · 𝑥 ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ) ) |
| 182 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐵 ∈ ℝ+ ) |
| 183 |
182
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ 𝐵 ) |
| 184 |
103 9 183 146
|
mulge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ ( 𝐵 · 𝑥 ) ) |
| 185 |
32
|
nnrecred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 186 |
29 185
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 187 |
23 104
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) − ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 188 |
23 12
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) + 1 ) ∈ ℝ ) |
| 189 |
67 185
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 190 |
64 189
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 191 |
|
harmonicubnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝑥 ) + 1 ) ) |
| 192 |
9 16 191
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝑥 ) + 1 ) ) |
| 193 |
17 73
|
relogdivd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ ( 𝑥 / 𝐴 ) ) = ( ( log ‘ 𝑥 ) − ( log ‘ 𝐴 ) ) ) |
| 194 |
17 73
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 / 𝐴 ) ∈ ℝ+ ) |
| 195 |
|
harmoniclbnd |
⊢ ( ( 𝑥 / 𝐴 ) ∈ ℝ+ → ( log ‘ ( 𝑥 / 𝐴 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( 1 / 𝑛 ) ) |
| 196 |
194 195
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ ( 𝑥 / 𝐴 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( 1 / 𝑛 ) ) |
| 197 |
193 196
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝑥 ) − ( log ‘ 𝐴 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( 1 / 𝑛 ) ) |
| 198 |
186 187 188 190 192 197
|
le2subd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝑥 ) + 1 ) − ( ( log ‘ 𝑥 ) − ( log ‘ 𝐴 ) ) ) ) |
| 199 |
67 31
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ) → 𝑛 ∈ ℕ ) |
| 200 |
199
|
nnrecred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 201 |
64 200
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 202 |
201
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( 1 / 𝑛 ) ∈ ℂ ) |
| 203 |
114
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ∈ ℂ ) |
| 204 |
32
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
| 205 |
32
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≠ 0 ) |
| 206 |
204 205
|
reccld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 207 |
79 47 29 206
|
fsumsplit |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( 1 / 𝑛 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ) ) |
| 208 |
202 203 207
|
mvrladdd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( 1 / 𝑛 ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ) |
| 209 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℂ ) |
| 210 |
104
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 211 |
173 209 210
|
pnncand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( log ‘ 𝑥 ) + 1 ) − ( ( log ‘ 𝑥 ) − ( log ‘ 𝐴 ) ) ) = ( 1 + ( log ‘ 𝐴 ) ) ) |
| 212 |
209 210 211
|
comraddd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( log ‘ 𝑥 ) + 1 ) − ( ( log ‘ 𝑥 ) − ( log ‘ 𝐴 ) ) ) = ( ( log ‘ 𝐴 ) + 1 ) ) |
| 213 |
198 208 212
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ) |
| 214 |
114 105 111 184 213
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝐵 · 𝑥 ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ) ≤ ( ( 𝐵 · 𝑥 ) · ( ( log ‘ 𝐴 ) + 1 ) ) ) |
| 215 |
105
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝐴 ) + 1 ) ∈ ℂ ) |
| 216 |
177 54 215
|
mulassd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝐵 · 𝑥 ) · ( ( log ‘ 𝐴 ) + 1 ) ) = ( 𝐵 · ( 𝑥 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ) |
| 217 |
177 54 215
|
mul12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐵 · ( 𝑥 · ( ( log ‘ 𝐴 ) + 1 ) ) ) = ( 𝑥 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ) |
| 218 |
216 217
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝐵 · 𝑥 ) · ( ( log ‘ 𝐴 ) + 1 ) ) = ( 𝑥 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ) |
| 219 |
214 218
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝐵 · 𝑥 ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ) ≤ ( 𝑥 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ) |
| 220 |
102 115 107 181 219
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ≤ ( 𝑥 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ) |
| 221 |
102 107 26 110 220
|
lemul2ad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · ( Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) ≤ ( 2 · ( 𝑥 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ) ) |
| 222 |
|
2cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 2 ∈ ℂ ) |
| 223 |
222 173 62 175
|
div32d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) = ( 2 · ( Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) / ( log ‘ 𝑥 ) ) ) ) |
| 224 |
210 209
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( log ‘ 𝐴 ) + 1 ) ∈ ℂ ) |
| 225 |
177 224
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ∈ ℂ ) |
| 226 |
54 222 225
|
mul12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 · ( 2 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ) = ( 2 · ( 𝑥 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ) ) |
| 227 |
221 223 226
|
3brtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ≤ ( 𝑥 · ( 2 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ) ) |
| 228 |
101
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 2 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ∈ ℝ ) |
| 229 |
52 228 17
|
ledivmuld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) / 𝑥 ) ≤ ( 2 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ↔ ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ≤ ( 𝑥 · ( 2 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ) ) ) |
| 230 |
227 229
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) / 𝑥 ) ≤ ( 2 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ) |
| 231 |
230
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 (,) +∞ ) ∧ 1 ≤ 𝑥 ) ) → ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) / 𝑥 ) ≤ ( 2 · ( 𝐵 · ( ( log ‘ 𝐴 ) + 1 ) ) ) ) |
| 232 |
94 91 95 101 231
|
ello1d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) / 𝑥 ) ) ∈ ≤𝑂(1) ) |
| 233 |
90 91 92 232
|
lo1add |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) + ( ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) / 𝑥 ) ) ) ∈ ≤𝑂(1) ) |
| 234 |
89 233
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 1 (,) +∞ ) ↦ ( ( ( ( abs ‘ ( 𝑅 ‘ 𝑥 ) ) · ( log ‘ 𝑥 ) ) − ( ( 2 / ( log ‘ 𝑥 ) ) · Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ( ( abs ‘ ( 𝑅 ‘ ( 𝑥 / 𝑛 ) ) ) · ( log ‘ 𝑛 ) ) ) ) / 𝑥 ) ) ∈ ≤𝑂(1) ) |