| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntsval.1 |
⊢ 𝑆 = ( 𝑎 ∈ ℝ ↦ Σ 𝑖 ∈ ( 1 ... ( ⌊ ‘ 𝑎 ) ) ( ( Λ ‘ 𝑖 ) · ( ( log ‘ 𝑖 ) + ( ψ ‘ ( 𝑎 / 𝑖 ) ) ) ) ) |
| 2 |
|
pntrlog2bnd.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
| 3 |
|
pntrlog2bnd.t |
⊢ 𝑇 = ( 𝑎 ∈ ℝ ↦ if ( 𝑎 ∈ ℝ+ , ( 𝑎 · ( log ‘ 𝑎 ) ) , 0 ) ) |
| 4 |
|
pntrlog2bndlem5.1 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
| 5 |
|
pntrlog2bndlem5.2 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ+ ( abs ‘ ( ( 𝑅 ‘ 𝑦 ) / 𝑦 ) ) ≤ 𝐵 ) |
| 6 |
|
pntrlog2bndlem6.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 7 |
|
pntrlog2bndlem6.2 |
⊢ ( 𝜑 → 1 ≤ 𝐴 ) |
| 8 |
|
elioore |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → 𝑥 ∈ ℝ ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ ) |
| 10 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 11 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ+ ) |
| 12 |
11
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ∈ ℝ ) |
| 13 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 1 (,) +∞ ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 15 |
14
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 < 𝑥 ) |
| 16 |
12 9 15
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ≤ 𝑥 ) |
| 17 |
9 11 16
|
rpgecld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℝ+ ) |
| 18 |
10
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 19 |
6 18 7
|
rpgecld |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝐴 ∈ ℝ+ ) |
| 21 |
17 20
|
rpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 / 𝐴 ) ∈ ℝ+ ) |
| 22 |
21
|
rprege0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( 𝑥 / 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 / 𝐴 ) ) ) |
| 23 |
|
flge0nn0 |
⊢ ( ( ( 𝑥 / 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 𝑥 / 𝐴 ) ) → ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ∈ ℕ0 ) |
| 24 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ∈ ℕ ) |
| 25 |
22 23 24
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ∈ ℕ ) |
| 26 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 27 |
25 26
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 28 |
21
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 / 𝐴 ) ∈ ℝ ) |
| 29 |
17
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 0 ≤ 𝑥 ) |
| 30 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 1 ≤ 𝐴 ) |
| 31 |
11 20 9 29 30
|
lediv2ad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 / 𝐴 ) ≤ ( 𝑥 / 1 ) ) |
| 32 |
9
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → 𝑥 ∈ ℂ ) |
| 33 |
32
|
div1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 / 1 ) = 𝑥 ) |
| 34 |
31 33
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 𝑥 / 𝐴 ) ≤ 𝑥 ) |
| 35 |
|
flword2 |
⊢ ( ( ( 𝑥 / 𝐴 ) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ( 𝑥 / 𝐴 ) ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ) |
| 36 |
28 9 34 35
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ) |
| 37 |
|
fzsplit2 |
⊢ ( ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ) |
| 38 |
27 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 1 (,) +∞ ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝑥 / 𝐴 ) ) + 1 ) ... ( ⌊ ‘ 𝑥 ) ) ) ) |