| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pntrval.r | ⊢ 𝑅  =  ( 𝑎  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑎 )  −  𝑎 ) ) | 
						
							| 2 |  | rpssre | ⊢ ℝ+  ⊆  ℝ | 
						
							| 3 | 2 | a1i | ⊢ ( ⊤  →  ℝ+  ⊆  ℝ ) | 
						
							| 4 |  | 1red | ⊢ ( ⊤  →  1  ∈  ℝ ) | 
						
							| 5 | 1 | pntrval | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑅 ‘ 𝑥 )  =  ( ( ψ ‘ 𝑥 )  −  𝑥 ) ) | 
						
							| 6 |  | rpre | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℝ ) | 
						
							| 7 |  | chpcl | ⊢ ( 𝑥  ∈  ℝ  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑥  ∈  ℝ+  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 9 | 8 6 | resubcld | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ψ ‘ 𝑥 )  −  𝑥 )  ∈  ℝ ) | 
						
							| 10 | 5 9 | eqeltrd | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑅 ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 11 |  | rerpdivcl | ⊢ ( ( ( 𝑅 ‘ 𝑥 )  ∈  ℝ  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝑅 ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 12 | 10 11 | mpancom | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( 𝑅 ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 13 | 12 | recnd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( 𝑅 ‘ 𝑥 )  /  𝑥 )  ∈  ℂ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝑅 ‘ 𝑥 )  /  𝑥 )  ∈  ℂ ) | 
						
							| 15 | 5 | oveq1d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( 𝑅 ‘ 𝑥 )  /  𝑥 )  =  ( ( ( ψ ‘ 𝑥 )  −  𝑥 )  /  𝑥 ) ) | 
						
							| 16 | 8 | recnd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ψ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 17 |  | rpcn | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ∈  ℂ ) | 
						
							| 18 |  | rpne0 | ⊢ ( 𝑥  ∈  ℝ+  →  𝑥  ≠  0 ) | 
						
							| 19 | 16 17 17 18 | divsubdird | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ψ ‘ 𝑥 )  −  𝑥 )  /  𝑥 )  =  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  −  ( 𝑥  /  𝑥 ) ) ) | 
						
							| 20 | 17 18 | dividd | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  /  𝑥 )  =  1 ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  −  ( 𝑥  /  𝑥 ) )  =  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  −  1 ) ) | 
						
							| 22 | 15 19 21 | 3eqtrd | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( 𝑅 ‘ 𝑥 )  /  𝑥 )  =  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  −  1 ) ) | 
						
							| 23 | 22 | mpteq2ia | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( 𝑅 ‘ 𝑥 )  /  𝑥 ) )  =  ( 𝑥  ∈  ℝ+  ↦  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  −  1 ) ) | 
						
							| 24 |  | rerpdivcl | ⊢ ( ( ( ψ ‘ 𝑥 )  ∈  ℝ  ∧  𝑥  ∈  ℝ+ )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 25 | 8 24 | mpancom | ⊢ ( 𝑥  ∈  ℝ+  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 27 |  | 1red | ⊢ ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  →  1  ∈  ℝ ) | 
						
							| 28 |  | chpo1ub | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ∈  𝑂(1) | 
						
							| 29 | 28 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( ψ ‘ 𝑥 )  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 30 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 31 |  | o1const | ⊢ ( ( ℝ+  ⊆  ℝ  ∧  1  ∈  ℂ )  →  ( 𝑥  ∈  ℝ+  ↦  1 )  ∈  𝑂(1) ) | 
						
							| 32 | 2 30 31 | mp2an | ⊢ ( 𝑥  ∈  ℝ+  ↦  1 )  ∈  𝑂(1) | 
						
							| 33 | 32 | a1i | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  1 )  ∈  𝑂(1) ) | 
						
							| 34 | 26 27 29 33 | o1sub2 | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  −  1 ) )  ∈  𝑂(1) ) | 
						
							| 35 | 23 34 | eqeltrid | ⊢ ( ⊤  →  ( 𝑥  ∈  ℝ+  ↦  ( ( 𝑅 ‘ 𝑥 )  /  𝑥 ) )  ∈  𝑂(1) ) | 
						
							| 36 |  | chpcl | ⊢ ( 𝑦  ∈  ℝ  →  ( ψ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 37 |  | peano2re | ⊢ ( ( ψ ‘ 𝑦 )  ∈  ℝ  →  ( ( ψ ‘ 𝑦 )  +  1 )  ∈  ℝ ) | 
						
							| 38 | 36 37 | syl | ⊢ ( 𝑦  ∈  ℝ  →  ( ( ψ ‘ 𝑦 )  +  1 )  ∈  ℝ ) | 
						
							| 39 | 38 | ad2antrl | ⊢ ( ( ⊤  ∧  ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 ) )  →  ( ( ψ ‘ 𝑦 )  +  1 )  ∈  ℝ ) | 
						
							| 40 | 22 | 3ad2ant1 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ( 𝑅 ‘ 𝑥 )  /  𝑥 )  =  ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  −  1 ) ) | 
						
							| 41 | 40 | fveq2d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑥 )  /  𝑥 ) )  =  ( abs ‘ ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  −  1 ) ) ) | 
						
							| 42 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 43 | 38 | 3ad2ant2 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ( ψ ‘ 𝑦 )  +  1 )  ∈  ℝ ) | 
						
							| 44 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( ψ ‘ 𝑦 )  +  1 )  ∈  ℝ )  →  ( 1  −  ( ( ψ ‘ 𝑦 )  +  1 ) )  ∈  ℝ ) | 
						
							| 45 | 42 43 44 | sylancr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( 1  −  ( ( ψ ‘ 𝑦 )  +  1 ) )  ∈  ℝ ) | 
						
							| 46 |  | 0red | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  0  ∈  ℝ ) | 
						
							| 47 | 25 | 3ad2ant1 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 48 |  | chpge0 | ⊢ ( 𝑦  ∈  ℝ  →  0  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 49 | 48 | 3ad2ant2 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  0  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 50 | 36 | 3ad2ant2 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ψ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 51 |  | addge02 | ⊢ ( ( 1  ∈  ℝ  ∧  ( ψ ‘ 𝑦 )  ∈  ℝ )  →  ( 0  ≤  ( ψ ‘ 𝑦 )  ↔  1  ≤  ( ( ψ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 52 | 42 50 51 | sylancr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( 0  ≤  ( ψ ‘ 𝑦 )  ↔  1  ≤  ( ( ψ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 53 | 49 52 | mpbid | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  1  ≤  ( ( ψ ‘ 𝑦 )  +  1 ) ) | 
						
							| 54 |  | suble0 | ⊢ ( ( 1  ∈  ℝ  ∧  ( ( ψ ‘ 𝑦 )  +  1 )  ∈  ℝ )  →  ( ( 1  −  ( ( ψ ‘ 𝑦 )  +  1 ) )  ≤  0  ↔  1  ≤  ( ( ψ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 55 | 42 43 54 | sylancr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ( 1  −  ( ( ψ ‘ 𝑦 )  +  1 ) )  ≤  0  ↔  1  ≤  ( ( ψ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 56 | 53 55 | mpbird | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( 1  −  ( ( ψ ‘ 𝑦 )  +  1 ) )  ≤  0 ) | 
						
							| 57 | 8 | 3ad2ant1 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 58 | 6 | 3ad2ant1 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ℝ ) | 
						
							| 59 |  | chpge0 | ⊢ ( 𝑥  ∈  ℝ  →  0  ≤  ( ψ ‘ 𝑥 ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  0  ≤  ( ψ ‘ 𝑥 ) ) | 
						
							| 61 |  | rpregt0 | ⊢ ( 𝑥  ∈  ℝ+  →  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 62 | 61 | 3ad2ant1 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) ) | 
						
							| 63 |  | divge0 | ⊢ ( ( ( ( ψ ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ψ ‘ 𝑥 ) )  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 ) )  →  0  ≤  ( ( ψ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 64 | 57 60 62 63 | syl21anc | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  0  ≤  ( ( ψ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 65 | 45 46 47 56 64 | letrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( 1  −  ( ( ψ ‘ 𝑦 )  +  1 ) )  ≤  ( ( ψ ‘ 𝑥 )  /  𝑥 ) ) | 
						
							| 66 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 67 |  | readdcl | ⊢ ( ( ( ψ ‘ 𝑦 )  ∈  ℝ  ∧  2  ∈  ℝ )  →  ( ( ψ ‘ 𝑦 )  +  2 )  ∈  ℝ ) | 
						
							| 68 | 50 66 67 | sylancl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ( ψ ‘ 𝑦 )  +  2 )  ∈  ℝ ) | 
						
							| 69 |  | 1red | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  1  ∈  ℝ ) | 
						
							| 70 | 58 | adantr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  𝑥  ≤  1 )  →  𝑥  ∈  ℝ ) | 
						
							| 71 |  | 1red | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  𝑥  ≤  1 )  →  1  ∈  ℝ ) | 
						
							| 72 | 66 | a1i | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  𝑥  ≤  1 )  →  2  ∈  ℝ ) | 
						
							| 73 |  | simpr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  𝑥  ≤  1 )  →  𝑥  ≤  1 ) | 
						
							| 74 |  | 1lt2 | ⊢ 1  <  2 | 
						
							| 75 | 74 | a1i | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  𝑥  ≤  1 )  →  1  <  2 ) | 
						
							| 76 | 70 71 72 73 75 | lelttrd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  𝑥  ≤  1 )  →  𝑥  <  2 ) | 
						
							| 77 |  | chpeq0 | ⊢ ( 𝑥  ∈  ℝ  →  ( ( ψ ‘ 𝑥 )  =  0  ↔  𝑥  <  2 ) ) | 
						
							| 78 | 70 77 | syl | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  𝑥  ≤  1 )  →  ( ( ψ ‘ 𝑥 )  =  0  ↔  𝑥  <  2 ) ) | 
						
							| 79 | 76 78 | mpbird | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  𝑥  ≤  1 )  →  ( ψ ‘ 𝑥 )  =  0 ) | 
						
							| 80 | 79 | oveq1d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  𝑥  ≤  1 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  =  ( 0  /  𝑥 ) ) | 
						
							| 81 |  | simp1 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  𝑥  ∈  ℝ+ ) | 
						
							| 82 | 81 | rpcnne0d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) ) | 
						
							| 83 |  | div0 | ⊢ ( ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 )  →  ( 0  /  𝑥 )  =  0 ) | 
						
							| 84 | 82 83 | syl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( 0  /  𝑥 )  =  0 ) | 
						
							| 85 | 84 49 | eqbrtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( 0  /  𝑥 )  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  𝑥  ≤  1 )  →  ( 0  /  𝑥 )  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 87 | 80 86 | eqbrtrd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  𝑥  ≤  1 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 88 | 47 | adantr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  1  ≤  𝑥 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ∈  ℝ ) | 
						
							| 89 | 57 | adantr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  1  ≤  𝑥 )  →  ( ψ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 90 | 50 | adantr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  1  ≤  𝑥 )  →  ( ψ ‘ 𝑦 )  ∈  ℝ ) | 
						
							| 91 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 92 | 91 | a1i | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  0  <  1 ) | 
						
							| 93 |  | lediv2a | ⊢ ( ( ( ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 )  ∧  ( ( ψ ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ψ ‘ 𝑥 ) ) )  ∧  1  ≤  𝑥 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( ( ψ ‘ 𝑥 )  /  1 ) ) | 
						
							| 94 | 93 | ex | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  <  1 )  ∧  ( 𝑥  ∈  ℝ  ∧  0  <  𝑥 )  ∧  ( ( ψ ‘ 𝑥 )  ∈  ℝ  ∧  0  ≤  ( ψ ‘ 𝑥 ) ) )  →  ( 1  ≤  𝑥  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( ( ψ ‘ 𝑥 )  /  1 ) ) ) | 
						
							| 95 | 69 92 62 57 60 94 | syl212anc | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( 1  ≤  𝑥  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( ( ψ ‘ 𝑥 )  /  1 ) ) ) | 
						
							| 96 | 95 | imp | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  1  ≤  𝑥 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( ( ψ ‘ 𝑥 )  /  1 ) ) | 
						
							| 97 | 89 | recnd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  1  ≤  𝑥 )  →  ( ψ ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 98 | 97 | div1d | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  1  ≤  𝑥 )  →  ( ( ψ ‘ 𝑥 )  /  1 )  =  ( ψ ‘ 𝑥 ) ) | 
						
							| 99 | 96 98 | breqtrd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  1  ≤  𝑥 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( ψ ‘ 𝑥 ) ) | 
						
							| 100 |  | simp2 | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  𝑦  ∈  ℝ ) | 
						
							| 101 |  | ltle | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  <  𝑦  →  𝑥  ≤  𝑦 ) ) | 
						
							| 102 | 6 101 | sylan | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  <  𝑦  →  𝑥  ≤  𝑦 ) ) | 
						
							| 103 | 102 | 3impia | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  𝑥  ≤  𝑦 ) | 
						
							| 104 |  | chpwordi | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ  ∧  𝑥  ≤  𝑦 )  →  ( ψ ‘ 𝑥 )  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 105 | 58 100 103 104 | syl3anc | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ψ ‘ 𝑥 )  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  1  ≤  𝑥 )  →  ( ψ ‘ 𝑥 )  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 107 | 88 89 90 99 106 | letrd | ⊢ ( ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  ∧  1  ≤  𝑥 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 108 | 58 69 87 107 | lecasei | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( ψ ‘ 𝑦 ) ) | 
						
							| 109 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 110 |  | nn0addge1 | ⊢ ( ( ( ψ ‘ 𝑦 )  ∈  ℝ  ∧  2  ∈  ℕ0 )  →  ( ψ ‘ 𝑦 )  ≤  ( ( ψ ‘ 𝑦 )  +  2 ) ) | 
						
							| 111 | 50 109 110 | sylancl | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ψ ‘ 𝑦 )  ≤  ( ( ψ ‘ 𝑦 )  +  2 ) ) | 
						
							| 112 | 47 50 68 108 111 | letrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( ( ψ ‘ 𝑦 )  +  2 ) ) | 
						
							| 113 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 114 | 113 | oveq2i | ⊢ ( ( ψ ‘ 𝑦 )  +  2 )  =  ( ( ψ ‘ 𝑦 )  +  ( 1  +  1 ) ) | 
						
							| 115 | 50 | recnd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ψ ‘ 𝑦 )  ∈  ℂ ) | 
						
							| 116 | 30 | a1i | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  1  ∈  ℂ ) | 
						
							| 117 | 115 116 116 | add12d | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ( ψ ‘ 𝑦 )  +  ( 1  +  1 ) )  =  ( 1  +  ( ( ψ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 118 | 114 117 | eqtrid | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ( ψ ‘ 𝑦 )  +  2 )  =  ( 1  +  ( ( ψ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 119 | 112 118 | breqtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( 1  +  ( ( ψ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 120 | 47 69 43 | absdifled | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( ( abs ‘ ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  −  1 ) )  ≤  ( ( ψ ‘ 𝑦 )  +  1 )  ↔  ( ( 1  −  ( ( ψ ‘ 𝑦 )  +  1 ) )  ≤  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ∧  ( ( ψ ‘ 𝑥 )  /  𝑥 )  ≤  ( 1  +  ( ( ψ ‘ 𝑦 )  +  1 ) ) ) ) ) | 
						
							| 121 | 65 119 120 | mpbir2and | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( abs ‘ ( ( ( ψ ‘ 𝑥 )  /  𝑥 )  −  1 ) )  ≤  ( ( ψ ‘ 𝑦 )  +  1 ) ) | 
						
							| 122 | 41 121 | eqbrtrd | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑥 )  /  𝑥 ) )  ≤  ( ( ψ ‘ 𝑦 )  +  1 ) ) | 
						
							| 123 | 122 | 3expb | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( 𝑦  ∈  ℝ  ∧  𝑥  <  𝑦 ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑥 )  /  𝑥 ) )  ≤  ( ( ψ ‘ 𝑦 )  +  1 ) ) | 
						
							| 124 | 123 | adantrlr | ⊢ ( ( 𝑥  ∈  ℝ+  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑥 )  /  𝑥 ) )  ≤  ( ( ψ ‘ 𝑦 )  +  1 ) ) | 
						
							| 125 | 124 | adantll | ⊢ ( ( ( ⊤  ∧  𝑥  ∈  ℝ+ )  ∧  ( ( 𝑦  ∈  ℝ  ∧  1  ≤  𝑦 )  ∧  𝑥  <  𝑦 ) )  →  ( abs ‘ ( ( 𝑅 ‘ 𝑥 )  /  𝑥 ) )  ≤  ( ( ψ ‘ 𝑦 )  +  1 ) ) | 
						
							| 126 | 3 4 14 35 39 125 | o1bddrp | ⊢ ( ⊤  →  ∃ 𝑐  ∈  ℝ+ ∀ 𝑥  ∈  ℝ+ ( abs ‘ ( ( 𝑅 ‘ 𝑥 )  /  𝑥 ) )  ≤  𝑐 ) | 
						
							| 127 | 126 | mptru | ⊢ ∃ 𝑐  ∈  ℝ+ ∀ 𝑥  ∈  ℝ+ ( abs ‘ ( ( 𝑅 ‘ 𝑥 )  /  𝑥 ) )  ≤  𝑐 |