| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntrval.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
| 2 |
|
ssidd |
⊢ ( ⊤ → ℝ ⊆ ℝ ) |
| 3 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 4 |
|
fzfid |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℝ ) → ( 1 ... ( ⌊ ‘ 𝑚 ) ) ∈ Fin ) |
| 5 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) → 𝑛 ∈ ℕ ) |
| 6 |
5
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → 𝑛 ∈ ℕ ) |
| 7 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 8 |
1
|
pntrf |
⊢ 𝑅 : ℝ+ ⟶ ℝ |
| 9 |
8
|
ffvelcdmi |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 10 |
7 9
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 11 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
| 12 |
|
nnmulcl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 13 |
11 12
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 14 |
10 13
|
nndivred |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 15 |
14
|
recnd |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 16 |
6 15
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 17 |
4 16
|
fsumcl |
⊢ ( ( ⊤ ∧ 𝑚 ∈ ℝ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 18 |
1
|
pntrsumo1 |
⊢ ( 𝑚 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ 𝑂(1) |
| 19 |
18
|
a1i |
⊢ ( ⊤ → ( 𝑚 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ 𝑂(1) ) |
| 20 |
|
fzfid |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 21 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
| 22 |
21
|
adantl |
⊢ ( ( ( ⊤ ∧ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 23 |
22 15
|
syl |
⊢ ( ( ( ⊤ ∧ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 24 |
23
|
abscld |
⊢ ( ( ( ⊤ ∧ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 25 |
20 24
|
fsumrecl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 26 |
17
|
adantr |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 27 |
26
|
abscld |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 28 |
|
fzfid |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑚 ) ) ∈ Fin ) |
| 29 |
16
|
adantlr |
⊢ ( ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 30 |
29
|
abscld |
⊢ ( ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 31 |
28 30
|
fsumrecl |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 32 |
25
|
ad2ant2r |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 33 |
28 29
|
fsumabs |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 34 |
|
fzfid |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 35 |
21
|
adantl |
⊢ ( ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 36 |
35 15
|
syl |
⊢ ( ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 37 |
36
|
abscld |
⊢ ( ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 38 |
36
|
absge0d |
⊢ ( ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 39 |
|
simplr |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → 𝑚 ∈ ℝ ) |
| 40 |
|
simprll |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 41 |
|
simprr |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → 𝑚 < 𝑥 ) |
| 42 |
39 40 41
|
ltled |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → 𝑚 ≤ 𝑥 ) |
| 43 |
|
flword2 |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ 𝑚 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 44 |
39 40 42 43
|
syl3anc |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 45 |
|
fzss2 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) → ( 1 ... ( ⌊ ‘ 𝑚 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 46 |
44 45
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → ( 1 ... ( ⌊ ‘ 𝑚 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 47 |
34 37 38 46
|
fsumless |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 48 |
27 31 32 33 47
|
letrd |
⊢ ( ( ( ⊤ ∧ 𝑚 ∈ ℝ ) ∧ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ∧ 𝑚 < 𝑥 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 49 |
2 3 17 19 25 48
|
o1bddrp |
⊢ ( ⊤ → ∃ 𝑐 ∈ ℝ+ ∀ 𝑚 ∈ ℝ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ) |
| 50 |
49
|
mptru |
⊢ ∃ 𝑐 ∈ ℝ+ ∀ 𝑚 ∈ ℝ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 |
| 51 |
|
zre |
⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ℝ ) |
| 52 |
51
|
imim1i |
⊢ ( ( 𝑚 ∈ ℝ → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ) → ( 𝑚 ∈ ℤ → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ) ) |
| 53 |
|
flid |
⊢ ( 𝑚 ∈ ℤ → ( ⌊ ‘ 𝑚 ) = 𝑚 ) |
| 54 |
53
|
oveq2d |
⊢ ( 𝑚 ∈ ℤ → ( 1 ... ( ⌊ ‘ 𝑚 ) ) = ( 1 ... 𝑚 ) ) |
| 55 |
54
|
sumeq1d |
⊢ ( 𝑚 ∈ ℤ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 56 |
55
|
fveq2d |
⊢ ( 𝑚 ∈ ℤ → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 57 |
56
|
breq1d |
⊢ ( 𝑚 ∈ ℤ → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ↔ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ) ) |
| 58 |
52 57
|
mpbidi |
⊢ ( ( 𝑚 ∈ ℝ → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ) → ( 𝑚 ∈ ℤ → ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ) ) |
| 59 |
58
|
ralimi2 |
⊢ ( ∀ 𝑚 ∈ ℝ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 → ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ) |
| 60 |
59
|
reximi |
⊢ ( ∃ 𝑐 ∈ ℝ+ ∀ 𝑚 ∈ ℝ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 → ∃ 𝑐 ∈ ℝ+ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ) |
| 61 |
50 60
|
ax-mp |
⊢ ∃ 𝑐 ∈ ℝ+ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 |