| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntrval.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
| 2 |
1
|
pntrsumbnd |
⊢ ∃ 𝑏 ∈ ℝ+ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 |
| 3 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 4 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ 𝑏 ∈ ℝ+ ) → ( 2 · 𝑏 ) ∈ ℝ+ ) |
| 5 |
3 4
|
mpan |
⊢ ( 𝑏 ∈ ℝ+ → ( 2 · 𝑏 ) ∈ ℝ+ ) |
| 6 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑘 − 1 ) → ( 1 ... 𝑚 ) = ( 1 ... ( 𝑘 − 1 ) ) ) |
| 7 |
6
|
sumeq1d |
⊢ ( 𝑚 = ( 𝑘 − 1 ) → Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑚 = ( 𝑘 − 1 ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 9 |
8
|
breq1d |
⊢ ( 𝑚 = ( 𝑘 − 1 ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ↔ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) ∧ 𝑘 ∈ ℕ ) → ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) |
| 11 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 12 |
11
|
adantl |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
| 13 |
|
peano2zm |
⊢ ( 𝑘 ∈ ℤ → ( 𝑘 − 1 ) ∈ ℤ ) |
| 14 |
12 13
|
syl |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 − 1 ) ∈ ℤ ) |
| 15 |
9 10 14
|
rspcdva |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) ∧ 𝑘 ∈ ℕ ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) |
| 16 |
5
|
ad2antrr |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → ( 2 · 𝑏 ) ∈ ℝ+ ) |
| 17 |
16
|
rpge0d |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → 0 ≤ ( 2 · 𝑏 ) ) |
| 18 |
|
sumeq1 |
⊢ ( ( 𝑘 ... 𝑚 ) = ∅ → Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = Σ 𝑛 ∈ ∅ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 19 |
|
sum0 |
⊢ Σ 𝑛 ∈ ∅ ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = 0 |
| 20 |
18 19
|
eqtrdi |
⊢ ( ( 𝑘 ... 𝑚 ) = ∅ → Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = 0 ) |
| 21 |
20
|
abs00bd |
⊢ ( ( 𝑘 ... 𝑚 ) = ∅ → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = 0 ) |
| 22 |
21
|
breq1d |
⊢ ( ( 𝑘 ... 𝑚 ) = ∅ → ( ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ↔ 0 ≤ ( 2 · 𝑏 ) ) ) |
| 23 |
17 22
|
syl5ibrcom |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → ( ( 𝑘 ... 𝑚 ) = ∅ → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 24 |
23
|
imp |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ ( 𝑘 ... 𝑚 ) = ∅ ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) |
| 25 |
24
|
a1d |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ ( 𝑘 ... 𝑚 ) = ∅ ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 26 |
|
fzn0 |
⊢ ( ( 𝑘 ... 𝑚 ) ≠ ∅ ↔ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 27 |
|
fzfid |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 1 ... 𝑚 ) ∈ Fin ) |
| 28 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... 𝑚 ) → 𝑛 ∈ ℕ ) |
| 29 |
|
simpr |
⊢ ( ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
| 30 |
29
|
nnrpd |
⊢ ( ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℝ+ ) |
| 31 |
1
|
pntrf |
⊢ 𝑅 : ℝ+ ⟶ ℝ |
| 32 |
31
|
ffvelcdmi |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 33 |
30 32
|
syl |
⊢ ( ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 34 |
29
|
peano2nnd |
⊢ ( ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 35 |
29 34
|
nnmulcld |
⊢ ( ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 36 |
33 35
|
nndivred |
⊢ ( ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 37 |
28 36
|
sylan2 |
⊢ ( ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 38 |
27 37
|
fsumrecl |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 39 |
38
|
recnd |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 40 |
39
|
abscld |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 41 |
|
fzfid |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 1 ... ( 𝑘 − 1 ) ) ∈ Fin ) |
| 42 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) → 𝑛 ∈ ℕ ) |
| 43 |
42 36
|
sylan2 |
⊢ ( ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 44 |
41 43
|
fsumrecl |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 45 |
44
|
recnd |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 46 |
45
|
abscld |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 47 |
|
simplll |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑏 ∈ ℝ+ ) |
| 48 |
47
|
rpred |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑏 ∈ ℝ ) |
| 49 |
|
le2add |
⊢ ( ( ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) ∧ ( 𝑏 ∈ ℝ ∧ 𝑏 ∈ ℝ ) ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ≤ ( 𝑏 + 𝑏 ) ) ) |
| 50 |
40 46 48 48 49
|
syl22anc |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ≤ ( 𝑏 + 𝑏 ) ) ) |
| 51 |
48
|
recnd |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑏 ∈ ℂ ) |
| 52 |
51
|
2timesd |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 2 · 𝑏 ) = ( 𝑏 + 𝑏 ) ) |
| 53 |
52
|
breq2d |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ≤ ( 2 · 𝑏 ) ↔ ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ≤ ( 𝑏 + 𝑏 ) ) ) |
| 54 |
|
fzfid |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑘 ... 𝑚 ) ∈ Fin ) |
| 55 |
|
simpllr |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ ℕ ) |
| 56 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( 𝑘 ... 𝑚 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) |
| 57 |
|
eluznn |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑛 ∈ ℕ ) |
| 58 |
55 56 57
|
syl2an |
⊢ ( ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ) → 𝑛 ∈ ℕ ) |
| 59 |
58 36
|
syldan |
⊢ ( ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 60 |
54 59
|
fsumrecl |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 61 |
60
|
recnd |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 62 |
55
|
nnred |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ ℝ ) |
| 63 |
62
|
ltm1d |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑘 − 1 ) < 𝑘 ) |
| 64 |
|
fzdisj |
⊢ ( ( 𝑘 − 1 ) < 𝑘 → ( ( 1 ... ( 𝑘 − 1 ) ) ∩ ( 𝑘 ... 𝑚 ) ) = ∅ ) |
| 65 |
63 64
|
syl |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 1 ... ( 𝑘 − 1 ) ) ∩ ( 𝑘 ... 𝑚 ) ) = ∅ ) |
| 66 |
55
|
nncnd |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ ℂ ) |
| 67 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 68 |
|
npcan |
⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
| 69 |
66 67 68
|
sylancl |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
| 70 |
69 55
|
eqeltrd |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑘 − 1 ) + 1 ) ∈ ℕ ) |
| 71 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 72 |
70 71
|
eleqtrdi |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 𝑘 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 73 |
55
|
nnzd |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑘 ∈ ℤ ) |
| 74 |
73 13
|
syl |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 𝑘 − 1 ) ∈ ℤ ) |
| 75 |
|
simplr |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → 𝑘 ∈ ℕ ) |
| 76 |
75
|
nncnd |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → 𝑘 ∈ ℂ ) |
| 77 |
76 67 68
|
sylancl |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → ( ( 𝑘 − 1 ) + 1 ) = 𝑘 ) |
| 78 |
77
|
fveq2d |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → ( ℤ≥ ‘ ( ( 𝑘 − 1 ) + 1 ) ) = ( ℤ≥ ‘ 𝑘 ) ) |
| 79 |
78
|
eleq2d |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → ( 𝑚 ∈ ( ℤ≥ ‘ ( ( 𝑘 − 1 ) + 1 ) ) ↔ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ) |
| 80 |
79
|
biimpar |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑚 ∈ ( ℤ≥ ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) |
| 81 |
|
peano2uzr |
⊢ ( ( ( 𝑘 − 1 ) ∈ ℤ ∧ 𝑚 ∈ ( ℤ≥ ‘ ( ( 𝑘 − 1 ) + 1 ) ) ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑘 − 1 ) ) ) |
| 82 |
74 80 81
|
syl2anc |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑘 − 1 ) ) ) |
| 83 |
|
fzsplit2 |
⊢ ( ( ( ( 𝑘 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑘 − 1 ) ) ) → ( 1 ... 𝑚 ) = ( ( 1 ... ( 𝑘 − 1 ) ) ∪ ( ( ( 𝑘 − 1 ) + 1 ) ... 𝑚 ) ) ) |
| 84 |
72 82 83
|
syl2anc |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 1 ... 𝑚 ) = ( ( 1 ... ( 𝑘 − 1 ) ) ∪ ( ( ( 𝑘 − 1 ) + 1 ) ... 𝑚 ) ) ) |
| 85 |
69
|
oveq1d |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( 𝑘 − 1 ) + 1 ) ... 𝑚 ) = ( 𝑘 ... 𝑚 ) ) |
| 86 |
85
|
uneq2d |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( 1 ... ( 𝑘 − 1 ) ) ∪ ( ( ( 𝑘 − 1 ) + 1 ) ... 𝑚 ) ) = ( ( 1 ... ( 𝑘 − 1 ) ) ∪ ( 𝑘 ... 𝑚 ) ) ) |
| 87 |
84 86
|
eqtrd |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 1 ... 𝑚 ) = ( ( 1 ... ( 𝑘 − 1 ) ) ∪ ( 𝑘 ... 𝑚 ) ) ) |
| 88 |
37
|
recnd |
⊢ ( ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑚 ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 89 |
65 87 27 88
|
fsumsplit |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) + Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 90 |
45 61 89
|
mvrladdd |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 91 |
90
|
fveq2d |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) = ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 92 |
39 45
|
abs2dif2d |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) − Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ≤ ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ) |
| 93 |
91 92
|
eqbrtrrd |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ) |
| 94 |
61
|
abscld |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ) |
| 95 |
40 46
|
readdcld |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ∈ ℝ ) |
| 96 |
|
2re |
⊢ 2 ∈ ℝ |
| 97 |
96
|
a1i |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → 2 ∈ ℝ ) |
| 98 |
97 48
|
remulcld |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( 2 · 𝑏 ) ∈ ℝ ) |
| 99 |
|
letr |
⊢ ( ( ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ ℝ ∧ ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ∈ ℝ ∧ ( 2 · 𝑏 ) ∈ ℝ ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ∧ ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ≤ ( 2 · 𝑏 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 100 |
94 95 98 99
|
syl3anc |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ∧ ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ≤ ( 2 · 𝑏 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 101 |
93 100
|
mpand |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ≤ ( 2 · 𝑏 ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 102 |
53 101
|
sylbird |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) + ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) ≤ ( 𝑏 + 𝑏 ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 103 |
50 102
|
syld |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 104 |
103
|
ancomsd |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑘 ) ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 105 |
26 104
|
sylan2b |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ ( 𝑘 ... 𝑚 ) ≠ ∅ ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 106 |
25 105
|
pm2.61dane |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) → ( ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 107 |
106
|
imp |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ 𝑚 ∈ ℤ ) ∧ ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) |
| 108 |
107
|
an4s |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) ∧ ( 𝑚 ∈ ℤ ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) ) → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) |
| 109 |
108
|
expr |
⊢ ( ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) ∧ 𝑚 ∈ ℤ ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 → ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 110 |
109
|
ralimdva |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) → ( ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 → ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 111 |
110
|
impancom |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) ∧ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 → ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 112 |
111
|
an32s |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) ∧ 𝑘 ∈ ℕ ) → ( ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( 𝑘 − 1 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 → ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 113 |
15 112
|
mpd |
⊢ ( ( ( 𝑏 ∈ ℝ+ ∧ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) ∧ 𝑘 ∈ ℕ ) → ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) |
| 114 |
113
|
ralrimiva |
⊢ ( ( 𝑏 ∈ ℝ+ ∧ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) → ∀ 𝑘 ∈ ℕ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) |
| 115 |
|
breq2 |
⊢ ( 𝑐 = ( 2 · 𝑏 ) → ( ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ↔ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 116 |
115
|
2ralbidv |
⊢ ( 𝑐 = ( 2 · 𝑏 ) → ( ∀ 𝑘 ∈ ℕ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ↔ ∀ 𝑘 ∈ ℕ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) ) |
| 117 |
116
|
rspcev |
⊢ ( ( ( 2 · 𝑏 ) ∈ ℝ+ ∧ ∀ 𝑘 ∈ ℕ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ ( 2 · 𝑏 ) ) → ∃ 𝑐 ∈ ℝ+ ∀ 𝑘 ∈ ℕ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ) |
| 118 |
5 114 117
|
syl2an2r |
⊢ ( ( 𝑏 ∈ ℝ+ ∧ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 ) → ∃ 𝑐 ∈ ℝ+ ∀ 𝑘 ∈ ℕ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ) |
| 119 |
118
|
rexlimiva |
⊢ ( ∃ 𝑏 ∈ ℝ+ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 1 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑏 → ∃ 𝑐 ∈ ℝ+ ∀ 𝑘 ∈ ℕ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 ) |
| 120 |
2 119
|
ax-mp |
⊢ ∃ 𝑐 ∈ ℝ+ ∀ 𝑘 ∈ ℕ ∀ 𝑚 ∈ ℤ ( abs ‘ Σ 𝑛 ∈ ( 𝑘 ... 𝑚 ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ≤ 𝑐 |