| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pntrval.r |
⊢ 𝑅 = ( 𝑎 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑎 ) − 𝑎 ) ) |
| 2 |
|
1re |
⊢ 1 ∈ ℝ |
| 3 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) |
| 5 |
4
|
simplbi |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 𝑥 ∈ ℝ ) |
| 6 |
|
0red |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 0 ∈ ℝ ) |
| 7 |
|
1red |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 1 ∈ ℝ ) |
| 8 |
|
0lt1 |
⊢ 0 < 1 |
| 9 |
8
|
a1i |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 0 < 1 ) |
| 10 |
4
|
simprbi |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 1 ≤ 𝑥 ) |
| 11 |
6 7 5 9 10
|
ltletrd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 0 < 𝑥 ) |
| 12 |
5 11
|
elrpd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 𝑥 ∈ ℝ+ ) |
| 13 |
12
|
ssriv |
⊢ ( 1 [,) +∞ ) ⊆ ℝ+ |
| 14 |
13
|
a1i |
⊢ ( ⊤ → ( 1 [,) +∞ ) ⊆ ℝ+ ) |
| 15 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 16 |
14 15
|
sstrdi |
⊢ ( ⊤ → ( 1 [,) +∞ ) ⊆ ℝ ) |
| 17 |
16
|
resmptd |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ↾ ( 1 [,) +∞ ) ) = ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 18 |
|
chpcl |
⊢ ( 𝑥 ∈ ℝ → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 19 |
5 18
|
syl |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 20 |
|
peano2re |
⊢ ( ( ψ ‘ 𝑥 ) ∈ ℝ → ( ( ψ ‘ 𝑥 ) + 1 ) ∈ ℝ ) |
| 21 |
19 20
|
syl |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ψ ‘ 𝑥 ) + 1 ) ∈ ℝ ) |
| 22 |
12
|
rprege0d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 23 |
|
flge0nn0 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
| 24 |
22 23
|
syl |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
| 25 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ ) |
| 26 |
24 25
|
syl |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ ) |
| 27 |
21 26
|
nndivred |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∈ ℝ ) |
| 28 |
27
|
recnd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∈ ℂ ) |
| 29 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 30 |
|
subcl |
⊢ ( ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ∈ ℂ ) |
| 31 |
28 29 30
|
sylancl |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ∈ ℂ ) |
| 32 |
|
fzfid |
⊢ ( 𝑥 ∈ ℝ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 33 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑛 ∈ ℕ ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 35 |
|
nnrp |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ+ ) |
| 36 |
1
|
pntrf |
⊢ 𝑅 : ℝ+ ⟶ ℝ |
| 37 |
36
|
ffvelcdmi |
⊢ ( 𝑛 ∈ ℝ+ → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 38 |
35 37
|
syl |
⊢ ( 𝑛 ∈ ℕ → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 39 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
| 40 |
|
nnmulcl |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 41 |
39 40
|
mpdan |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 42 |
38 41
|
nndivred |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 43 |
34 42
|
syl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 44 |
32 43
|
fsumrecl |
⊢ ( 𝑥 ∈ ℝ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 45 |
44
|
recnd |
⊢ ( 𝑥 ∈ ℝ → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 46 |
5 45
|
syl |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 47 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 1 / 𝑚 ) = ( 1 / 𝑛 ) ) |
| 48 |
|
fvoveq1 |
⊢ ( 𝑚 = 𝑛 → ( ψ ‘ ( 𝑚 − 1 ) ) = ( ψ ‘ ( 𝑛 − 1 ) ) ) |
| 49 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 − 1 ) = ( 𝑛 − 1 ) ) |
| 50 |
48 49
|
oveq12d |
⊢ ( 𝑚 = 𝑛 → ( ( ψ ‘ ( 𝑚 − 1 ) ) − ( 𝑚 − 1 ) ) = ( ( ψ ‘ ( 𝑛 − 1 ) ) − ( 𝑛 − 1 ) ) ) |
| 51 |
47 50
|
jca |
⊢ ( 𝑚 = 𝑛 → ( ( 1 / 𝑚 ) = ( 1 / 𝑛 ) ∧ ( ( ψ ‘ ( 𝑚 − 1 ) ) − ( 𝑚 − 1 ) ) = ( ( ψ ‘ ( 𝑛 − 1 ) ) − ( 𝑛 − 1 ) ) ) ) |
| 52 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 1 / 𝑚 ) = ( 1 / ( 𝑛 + 1 ) ) ) |
| 53 |
|
fvoveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ψ ‘ ( 𝑚 − 1 ) ) = ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) ) |
| 54 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 − 1 ) = ( ( 𝑛 + 1 ) − 1 ) ) |
| 55 |
53 54
|
oveq12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( ψ ‘ ( 𝑚 − 1 ) ) − ( 𝑚 − 1 ) ) = ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) ) |
| 56 |
52 55
|
jca |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 1 / 𝑚 ) = ( 1 / ( 𝑛 + 1 ) ) ∧ ( ( ψ ‘ ( 𝑚 − 1 ) ) − ( 𝑚 − 1 ) ) = ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) ) ) |
| 57 |
|
oveq2 |
⊢ ( 𝑚 = 1 → ( 1 / 𝑚 ) = ( 1 / 1 ) ) |
| 58 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 59 |
57 58
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( 1 / 𝑚 ) = 1 ) |
| 60 |
|
oveq1 |
⊢ ( 𝑚 = 1 → ( 𝑚 − 1 ) = ( 1 − 1 ) ) |
| 61 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 62 |
60 61
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( 𝑚 − 1 ) = 0 ) |
| 63 |
62
|
fveq2d |
⊢ ( 𝑚 = 1 → ( ψ ‘ ( 𝑚 − 1 ) ) = ( ψ ‘ 0 ) ) |
| 64 |
|
2pos |
⊢ 0 < 2 |
| 65 |
|
0re |
⊢ 0 ∈ ℝ |
| 66 |
|
chpeq0 |
⊢ ( 0 ∈ ℝ → ( ( ψ ‘ 0 ) = 0 ↔ 0 < 2 ) ) |
| 67 |
65 66
|
ax-mp |
⊢ ( ( ψ ‘ 0 ) = 0 ↔ 0 < 2 ) |
| 68 |
64 67
|
mpbir |
⊢ ( ψ ‘ 0 ) = 0 |
| 69 |
63 68
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( ψ ‘ ( 𝑚 − 1 ) ) = 0 ) |
| 70 |
69 62
|
oveq12d |
⊢ ( 𝑚 = 1 → ( ( ψ ‘ ( 𝑚 − 1 ) ) − ( 𝑚 − 1 ) ) = ( 0 − 0 ) ) |
| 71 |
|
0m0e0 |
⊢ ( 0 − 0 ) = 0 |
| 72 |
70 71
|
eqtrdi |
⊢ ( 𝑚 = 1 → ( ( ψ ‘ ( 𝑚 − 1 ) ) − ( 𝑚 − 1 ) ) = 0 ) |
| 73 |
59 72
|
jca |
⊢ ( 𝑚 = 1 → ( ( 1 / 𝑚 ) = 1 ∧ ( ( ψ ‘ ( 𝑚 − 1 ) ) − ( 𝑚 − 1 ) ) = 0 ) ) |
| 74 |
|
oveq2 |
⊢ ( 𝑚 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( 1 / 𝑚 ) = ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
| 75 |
|
fvoveq1 |
⊢ ( 𝑚 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( ψ ‘ ( 𝑚 − 1 ) ) = ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) |
| 76 |
|
oveq1 |
⊢ ( 𝑚 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( 𝑚 − 1 ) = ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) |
| 77 |
75 76
|
oveq12d |
⊢ ( 𝑚 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( ( ψ ‘ ( 𝑚 − 1 ) ) − ( 𝑚 − 1 ) ) = ( ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) − ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) |
| 78 |
74 77
|
jca |
⊢ ( 𝑚 = ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( ( 1 / 𝑚 ) = ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∧ ( ( ψ ‘ ( 𝑚 − 1 ) ) − ( 𝑚 − 1 ) ) = ( ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) − ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) ) |
| 79 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 80 |
26 79
|
eleqtrdi |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 81 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) → 𝑚 ∈ ℕ ) |
| 82 |
81
|
adantl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → 𝑚 ∈ ℕ ) |
| 83 |
82
|
nnrecred |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 84 |
83
|
recnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → ( 1 / 𝑚 ) ∈ ℂ ) |
| 85 |
82
|
nnred |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → 𝑚 ∈ ℝ ) |
| 86 |
|
peano2rem |
⊢ ( 𝑚 ∈ ℝ → ( 𝑚 − 1 ) ∈ ℝ ) |
| 87 |
85 86
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → ( 𝑚 − 1 ) ∈ ℝ ) |
| 88 |
|
chpcl |
⊢ ( ( 𝑚 − 1 ) ∈ ℝ → ( ψ ‘ ( 𝑚 − 1 ) ) ∈ ℝ ) |
| 89 |
87 88
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → ( ψ ‘ ( 𝑚 − 1 ) ) ∈ ℝ ) |
| 90 |
89 87
|
resubcld |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → ( ( ψ ‘ ( 𝑚 − 1 ) ) − ( 𝑚 − 1 ) ) ∈ ℝ ) |
| 91 |
90
|
recnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑚 ∈ ( 1 ... ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → ( ( ψ ‘ ( 𝑚 − 1 ) ) − ( 𝑚 − 1 ) ) ∈ ℂ ) |
| 92 |
51 56 73 78 80 84 91
|
fsumparts |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → Σ 𝑛 ∈ ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ( ( 1 / 𝑛 ) · ( ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) − ( ( ψ ‘ ( 𝑛 − 1 ) ) − ( 𝑛 − 1 ) ) ) ) = ( ( ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) − ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) − ( 1 · 0 ) ) − Σ 𝑛 ∈ ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ( ( ( 1 / ( 𝑛 + 1 ) ) − ( 1 / 𝑛 ) ) · ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) ) ) ) |
| 93 |
5
|
flcld |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ⌊ ‘ 𝑥 ) ∈ ℤ ) |
| 94 |
|
fzval3 |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℤ → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
| 95 |
93 94
|
syl |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) = ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
| 96 |
95
|
eqcomd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) = ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) |
| 97 |
33
|
adantl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 98 |
97
|
nncnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
| 99 |
|
pncan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
| 100 |
98 29 99
|
sylancl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
| 101 |
97
|
nnred |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ ) |
| 102 |
100 101
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 + 1 ) − 1 ) ∈ ℝ ) |
| 103 |
|
chpcl |
⊢ ( ( ( 𝑛 + 1 ) − 1 ) ∈ ℝ → ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) ∈ ℝ ) |
| 104 |
102 103
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) ∈ ℝ ) |
| 105 |
104
|
recnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) ∈ ℂ ) |
| 106 |
102
|
recnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 + 1 ) − 1 ) ∈ ℂ ) |
| 107 |
|
peano2rem |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 − 1 ) ∈ ℝ ) |
| 108 |
101 107
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 − 1 ) ∈ ℝ ) |
| 109 |
|
chpcl |
⊢ ( ( 𝑛 − 1 ) ∈ ℝ → ( ψ ‘ ( 𝑛 − 1 ) ) ∈ ℝ ) |
| 110 |
108 109
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑛 − 1 ) ) ∈ ℝ ) |
| 111 |
110
|
recnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( 𝑛 − 1 ) ) ∈ ℂ ) |
| 112 |
|
1cnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℂ ) |
| 113 |
98 112
|
subcld |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 − 1 ) ∈ ℂ ) |
| 114 |
105 106 111 113
|
sub4d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) − ( ( ψ ‘ ( 𝑛 − 1 ) ) − ( 𝑛 − 1 ) ) ) = ( ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ψ ‘ ( 𝑛 − 1 ) ) ) − ( ( ( 𝑛 + 1 ) − 1 ) − ( 𝑛 − 1 ) ) ) ) |
| 115 |
|
vmacl |
⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 116 |
97 115
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 117 |
116
|
recnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
| 118 |
|
nnm1nn0 |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 119 |
97 118
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 − 1 ) ∈ ℕ0 ) |
| 120 |
|
chpp1 |
⊢ ( ( 𝑛 − 1 ) ∈ ℕ0 → ( ψ ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( ( ψ ‘ ( 𝑛 − 1 ) ) + ( Λ ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ) |
| 121 |
119 120
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( ( ψ ‘ ( 𝑛 − 1 ) ) + ( Λ ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) ) |
| 122 |
|
npcan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
| 123 |
98 29 122
|
sylancl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 − 1 ) + 1 ) = 𝑛 ) |
| 124 |
123 100
|
eqtr4d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 − 1 ) + 1 ) = ( ( 𝑛 + 1 ) − 1 ) ) |
| 125 |
124
|
fveq2d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) ) |
| 126 |
123
|
fveq2d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ ( ( 𝑛 − 1 ) + 1 ) ) = ( Λ ‘ 𝑛 ) ) |
| 127 |
126
|
oveq2d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( 𝑛 − 1 ) ) + ( Λ ‘ ( ( 𝑛 − 1 ) + 1 ) ) ) = ( ( ψ ‘ ( 𝑛 − 1 ) ) + ( Λ ‘ 𝑛 ) ) ) |
| 128 |
121 125 127
|
3eqtr3d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) = ( ( ψ ‘ ( 𝑛 − 1 ) ) + ( Λ ‘ 𝑛 ) ) ) |
| 129 |
111 117 128
|
mvrladdd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ψ ‘ ( 𝑛 − 1 ) ) ) = ( Λ ‘ 𝑛 ) ) |
| 130 |
|
peano2cn |
⊢ ( 𝑛 ∈ ℂ → ( 𝑛 + 1 ) ∈ ℂ ) |
| 131 |
98 130
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 + 1 ) ∈ ℂ ) |
| 132 |
131 98 112
|
nnncan2d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑛 + 1 ) − 1 ) − ( 𝑛 − 1 ) ) = ( ( 𝑛 + 1 ) − 𝑛 ) ) |
| 133 |
|
pncan2 |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 + 1 ) − 𝑛 ) = 1 ) |
| 134 |
98 29 133
|
sylancl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 + 1 ) − 𝑛 ) = 1 ) |
| 135 |
132 134
|
eqtrd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑛 + 1 ) − 1 ) − ( 𝑛 − 1 ) ) = 1 ) |
| 136 |
129 135
|
oveq12d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ψ ‘ ( 𝑛 − 1 ) ) ) − ( ( ( 𝑛 + 1 ) − 1 ) − ( 𝑛 − 1 ) ) ) = ( ( Λ ‘ 𝑛 ) − 1 ) ) |
| 137 |
114 136
|
eqtrd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) − ( ( ψ ‘ ( 𝑛 − 1 ) ) − ( 𝑛 − 1 ) ) ) = ( ( Λ ‘ 𝑛 ) − 1 ) ) |
| 138 |
137
|
oveq2d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 / 𝑛 ) · ( ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) − ( ( ψ ‘ ( 𝑛 − 1 ) ) − ( 𝑛 − 1 ) ) ) ) = ( ( 1 / 𝑛 ) · ( ( Λ ‘ 𝑛 ) − 1 ) ) ) |
| 139 |
|
peano2rem |
⊢ ( ( Λ ‘ 𝑛 ) ∈ ℝ → ( ( Λ ‘ 𝑛 ) − 1 ) ∈ ℝ ) |
| 140 |
116 139
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) − 1 ) ∈ ℝ ) |
| 141 |
140
|
recnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) − 1 ) ∈ ℂ ) |
| 142 |
97
|
nnne0d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≠ 0 ) |
| 143 |
141 98 142
|
divrec2d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) = ( ( 1 / 𝑛 ) · ( ( Λ ‘ 𝑛 ) − 1 ) ) ) |
| 144 |
138 143
|
eqtr4d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 / 𝑛 ) · ( ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) − ( ( ψ ‘ ( 𝑛 − 1 ) ) − ( 𝑛 − 1 ) ) ) ) = ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) ) |
| 145 |
96 144
|
sumeq12rdv |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → Σ 𝑛 ∈ ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ( ( 1 / 𝑛 ) · ( ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) − ( ( ψ ‘ ( 𝑛 − 1 ) ) − ( 𝑛 − 1 ) ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) ) |
| 146 |
24
|
nn0cnd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ⌊ ‘ 𝑥 ) ∈ ℂ ) |
| 147 |
|
pncan |
⊢ ( ( ( ⌊ ‘ 𝑥 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝑥 ) ) |
| 148 |
146 29 147
|
sylancl |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) = ( ⌊ ‘ 𝑥 ) ) |
| 149 |
148
|
fveq2d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) = ( ψ ‘ ( ⌊ ‘ 𝑥 ) ) ) |
| 150 |
|
chpfl |
⊢ ( 𝑥 ∈ ℝ → ( ψ ‘ ( ⌊ ‘ 𝑥 ) ) = ( ψ ‘ 𝑥 ) ) |
| 151 |
5 150
|
syl |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ψ ‘ ( ⌊ ‘ 𝑥 ) ) = ( ψ ‘ 𝑥 ) ) |
| 152 |
149 151
|
eqtrd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) = ( ψ ‘ 𝑥 ) ) |
| 153 |
152
|
oveq1d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) − ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) = ( ( ψ ‘ 𝑥 ) − ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) |
| 154 |
19
|
recnd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ψ ‘ 𝑥 ) ∈ ℂ ) |
| 155 |
26
|
nncnd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℂ ) |
| 156 |
|
1cnd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 1 ∈ ℂ ) |
| 157 |
154 155 156
|
subsub3d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ψ ‘ 𝑥 ) − ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) = ( ( ( ψ ‘ 𝑥 ) + 1 ) − ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
| 158 |
153 157
|
eqtrd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) − ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) = ( ( ( ψ ‘ 𝑥 ) + 1 ) − ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
| 159 |
158
|
oveq2d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) − ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) = ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ( ψ ‘ 𝑥 ) + 1 ) − ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ) |
| 160 |
26
|
nnrecred |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∈ ℝ ) |
| 161 |
160
|
recnd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∈ ℂ ) |
| 162 |
|
peano2cn |
⊢ ( ( ψ ‘ 𝑥 ) ∈ ℂ → ( ( ψ ‘ 𝑥 ) + 1 ) ∈ ℂ ) |
| 163 |
154 162
|
syl |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ψ ‘ 𝑥 ) + 1 ) ∈ ℂ ) |
| 164 |
161 163 155
|
subdid |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ( ψ ‘ 𝑥 ) + 1 ) − ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) = ( ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ψ ‘ 𝑥 ) + 1 ) ) − ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ) |
| 165 |
26
|
nnne0d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ≠ 0 ) |
| 166 |
163 155 165
|
divrec2d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) = ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ψ ‘ 𝑥 ) + 1 ) ) ) |
| 167 |
166
|
eqcomd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ψ ‘ 𝑥 ) + 1 ) ) = ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
| 168 |
155 165
|
recid2d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ⌊ ‘ 𝑥 ) + 1 ) ) = 1 ) |
| 169 |
167 168
|
oveq12d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ψ ‘ 𝑥 ) + 1 ) ) − ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) = ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ) |
| 170 |
159 164 169
|
3eqtrd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) − ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) = ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ) |
| 171 |
29
|
mul01i |
⊢ ( 1 · 0 ) = 0 |
| 172 |
171
|
a1i |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( 1 · 0 ) = 0 ) |
| 173 |
170 172
|
oveq12d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) − ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) − ( 1 · 0 ) ) = ( ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) − 0 ) ) |
| 174 |
31
|
subid1d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) − 0 ) = ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ) |
| 175 |
173 174
|
eqtrd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) − ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) − ( 1 · 0 ) ) = ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ) |
| 176 |
97 41
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℕ ) |
| 177 |
176
|
nnrecred |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 178 |
177
|
recnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 179 |
97 38
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑅 ‘ 𝑛 ) ∈ ℝ ) |
| 180 |
179
|
recnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑅 ‘ 𝑛 ) ∈ ℂ ) |
| 181 |
178 180
|
mulneg1d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( - ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) · ( 𝑅 ‘ 𝑛 ) ) = - ( ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) · ( 𝑅 ‘ 𝑛 ) ) ) |
| 182 |
98 112
|
mulcld |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 · 1 ) ∈ ℂ ) |
| 183 |
98 131
|
mulcld |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 184 |
176
|
nnne0d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 · ( 𝑛 + 1 ) ) ≠ 0 ) |
| 185 |
131 182 183 184
|
divsubdird |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑛 + 1 ) − ( 𝑛 · 1 ) ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( ( ( 𝑛 + 1 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) − ( ( 𝑛 · 1 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 186 |
98
|
mulridd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 · 1 ) = 𝑛 ) |
| 187 |
186
|
oveq2d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 + 1 ) − ( 𝑛 · 1 ) ) = ( ( 𝑛 + 1 ) − 𝑛 ) ) |
| 188 |
187 134
|
eqtrd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 + 1 ) − ( 𝑛 · 1 ) ) = 1 ) |
| 189 |
188
|
oveq1d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑛 + 1 ) − ( 𝑛 · 1 ) ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 190 |
131
|
mulridd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 + 1 ) · 1 ) = ( 𝑛 + 1 ) ) |
| 191 |
131 98
|
mulcomd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 + 1 ) · 𝑛 ) = ( 𝑛 · ( 𝑛 + 1 ) ) ) |
| 192 |
190 191
|
oveq12d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑛 + 1 ) · 1 ) / ( ( 𝑛 + 1 ) · 𝑛 ) ) = ( ( 𝑛 + 1 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 193 |
97 39
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
| 194 |
193
|
nnne0d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑛 + 1 ) ≠ 0 ) |
| 195 |
112 98 131 142 194
|
divcan5d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑛 + 1 ) · 1 ) / ( ( 𝑛 + 1 ) · 𝑛 ) ) = ( 1 / 𝑛 ) ) |
| 196 |
192 195
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 + 1 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( 1 / 𝑛 ) ) |
| 197 |
112 131 98 194 142
|
divcan5d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 · 1 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( 1 / ( 𝑛 + 1 ) ) ) |
| 198 |
196 197
|
oveq12d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑛 + 1 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) − ( ( 𝑛 · 1 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( ( 1 / 𝑛 ) − ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 199 |
185 189 198
|
3eqtr3d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( ( 1 / 𝑛 ) − ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 200 |
199
|
negeqd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → - ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) = - ( ( 1 / 𝑛 ) − ( 1 / ( 𝑛 + 1 ) ) ) ) |
| 201 |
97
|
nnrecred |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 202 |
201
|
recnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 203 |
193
|
nnrecred |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / ( 𝑛 + 1 ) ) ∈ ℝ ) |
| 204 |
203
|
recnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / ( 𝑛 + 1 ) ) ∈ ℂ ) |
| 205 |
202 204
|
negsubdi2d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → - ( ( 1 / 𝑛 ) − ( 1 / ( 𝑛 + 1 ) ) ) = ( ( 1 / ( 𝑛 + 1 ) ) − ( 1 / 𝑛 ) ) ) |
| 206 |
200 205
|
eqtr2d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 / ( 𝑛 + 1 ) ) − ( 1 / 𝑛 ) ) = - ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 207 |
97
|
nnrpd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 208 |
100 207
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑛 + 1 ) − 1 ) ∈ ℝ+ ) |
| 209 |
1
|
pntrval |
⊢ ( ( ( 𝑛 + 1 ) − 1 ) ∈ ℝ+ → ( 𝑅 ‘ ( ( 𝑛 + 1 ) − 1 ) ) = ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) ) |
| 210 |
208 209
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑅 ‘ ( ( 𝑛 + 1 ) − 1 ) ) = ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) ) |
| 211 |
100
|
fveq2d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑅 ‘ ( ( 𝑛 + 1 ) − 1 ) ) = ( 𝑅 ‘ 𝑛 ) ) |
| 212 |
210 211
|
eqtr3d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) = ( 𝑅 ‘ 𝑛 ) ) |
| 213 |
206 212
|
oveq12d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 1 / ( 𝑛 + 1 ) ) − ( 1 / 𝑛 ) ) · ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) ) = ( - ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) · ( 𝑅 ‘ 𝑛 ) ) ) |
| 214 |
180 183 184
|
divrec2d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = ( ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) · ( 𝑅 ‘ 𝑛 ) ) ) |
| 215 |
214
|
negeqd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = - ( ( 1 / ( 𝑛 · ( 𝑛 + 1 ) ) ) · ( 𝑅 ‘ 𝑛 ) ) ) |
| 216 |
181 213 215
|
3eqtr4d |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 1 / ( 𝑛 + 1 ) ) − ( 1 / 𝑛 ) ) · ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) ) = - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 217 |
96 216
|
sumeq12rdv |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → Σ 𝑛 ∈ ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ( ( ( 1 / ( 𝑛 + 1 ) ) − ( 1 / 𝑛 ) ) · ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 218 |
|
fzfid |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 219 |
97 42
|
syl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℝ ) |
| 220 |
219
|
recnd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ∈ ℂ ) |
| 221 |
218 220
|
fsumneg |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) - ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) = - Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 222 |
217 221
|
eqtrd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → Σ 𝑛 ∈ ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ( ( ( 1 / ( 𝑛 + 1 ) ) − ( 1 / 𝑛 ) ) · ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) ) = - Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 223 |
175 222
|
oveq12d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ( ( 1 / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) · ( ( ψ ‘ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) − ( ( ( ⌊ ‘ 𝑥 ) + 1 ) − 1 ) ) ) − ( 1 · 0 ) ) − Σ 𝑛 ∈ ( 1 ..^ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ( ( ( 1 / ( 𝑛 + 1 ) ) − ( 1 / 𝑛 ) ) · ( ( ψ ‘ ( ( 𝑛 + 1 ) − 1 ) ) − ( ( 𝑛 + 1 ) − 1 ) ) ) ) = ( ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) − - Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 224 |
92 145 223
|
3eqtr3d |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) = ( ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) − - Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 225 |
31 46
|
subnegd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) − - Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 226 |
224 225
|
eqtrd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) = ( ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) + Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ) |
| 227 |
31 46 226
|
mvrladdd |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) − ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 228 |
227
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) − ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ) ) = ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 229 |
|
fzfid |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 230 |
33
|
adantl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℕ ) |
| 231 |
230 115
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 232 |
231 139
|
syl |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) − 1 ) ∈ ℝ ) |
| 233 |
232 230
|
nndivred |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) ∈ ℝ ) |
| 234 |
229 233
|
fsumrecl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) ∈ ℝ ) |
| 235 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 236 |
235
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 237 |
236 18
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ψ ‘ 𝑥 ) ∈ ℝ ) |
| 238 |
237 20
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ψ ‘ 𝑥 ) + 1 ) ∈ ℝ ) |
| 239 |
|
rprege0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
| 240 |
239 23
|
syl |
⊢ ( 𝑥 ∈ ℝ+ → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
| 241 |
240
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
| 242 |
241 25
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ ) |
| 243 |
238 242
|
nndivred |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∈ ℝ ) |
| 244 |
|
peano2rem |
⊢ ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∈ ℝ → ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ∈ ℝ ) |
| 245 |
243 244
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ∈ ℝ ) |
| 246 |
|
reex |
⊢ ℝ ∈ V |
| 247 |
246 15
|
ssexi |
⊢ ℝ+ ∈ V |
| 248 |
247
|
a1i |
⊢ ( ⊤ → ℝ+ ∈ V ) |
| 249 |
231 230
|
nndivred |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℝ ) |
| 250 |
249
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 251 |
229 250
|
fsumcl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) ∈ ℂ ) |
| 252 |
|
relogcl |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 253 |
252
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℝ ) |
| 254 |
253
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ∈ ℂ ) |
| 255 |
251 254
|
subcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 256 |
230
|
nnrecred |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 257 |
229 256
|
fsumrecl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 258 |
257 253
|
resubcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℝ ) |
| 259 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ) |
| 260 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ) |
| 261 |
248 255 258 259 260
|
offval2 |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ) ) |
| 262 |
256
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 263 |
229 250 262
|
fsumsub |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( 1 / 𝑛 ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ) ) |
| 264 |
231
|
recnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℂ ) |
| 265 |
|
1cnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℂ ) |
| 266 |
230
|
nncnd |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ∈ ℂ ) |
| 267 |
230
|
nnne0d |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑛 ≠ 0 ) |
| 268 |
264 265 266 267
|
divsubdird |
⊢ ( ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) = ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( 1 / 𝑛 ) ) ) |
| 269 |
268
|
sumeq2dv |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( 1 / 𝑛 ) ) ) |
| 270 |
257
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ∈ ℂ ) |
| 271 |
251 270 254
|
nnncan2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ) ) |
| 272 |
263 269 271
|
3eqtr4rd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) ) |
| 273 |
272
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) − ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) ) ) |
| 274 |
261 273
|
eqtrd |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) ) ) |
| 275 |
|
vmadivsum |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) |
| 276 |
15
|
a1i |
⊢ ( ⊤ → ℝ+ ⊆ ℝ ) |
| 277 |
258
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ∈ ℂ ) |
| 278 |
|
1red |
⊢ ( ⊤ → 1 ∈ ℝ ) |
| 279 |
|
harmoniclbnd |
⊢ ( 𝑥 ∈ ℝ+ → ( log ‘ 𝑥 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ) |
| 280 |
279
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( log ‘ 𝑥 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ) |
| 281 |
253 257 280
|
abssubge0d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) |
| 282 |
281
|
adantrr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) |
| 283 |
235
|
ad2antrl |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 𝑥 ∈ ℝ ) |
| 284 |
|
simprr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → 1 ≤ 𝑥 ) |
| 285 |
|
harmonicubnd |
⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝑥 ) + 1 ) ) |
| 286 |
283 284 285
|
syl2anc |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝑥 ) + 1 ) ) |
| 287 |
|
1red |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℝ ) |
| 288 |
257 253 287
|
lesubadd2d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ≤ 1 ↔ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝑥 ) + 1 ) ) ) |
| 289 |
288
|
adantrr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ≤ 1 ↔ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝑥 ) + 1 ) ) ) |
| 290 |
286 289
|
mpbird |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ≤ 1 ) |
| 291 |
282 290
|
eqbrtrd |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ≤ 1 ) |
| 292 |
276 277 278 278 291
|
elo1d |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 293 |
|
o1sub |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
| 294 |
275 292 293
|
sylancr |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 ) / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ∘f − ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / 𝑛 ) − ( log ‘ 𝑥 ) ) ) ) ∈ 𝑂(1) ) |
| 295 |
274 294
|
eqeltrrd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) ) ∈ 𝑂(1) ) |
| 296 |
243
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∈ ℂ ) |
| 297 |
|
1cnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 1 ∈ ℂ ) |
| 298 |
237
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ψ ‘ 𝑥 ) ∈ ℂ ) |
| 299 |
|
rpcnne0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 300 |
299
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 301 |
|
divdir |
⊢ ( ( ( ψ ‘ 𝑥 ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) = ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) |
| 302 |
298 297 300 301
|
syl3anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) = ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) |
| 303 |
302
|
mpteq2dva |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) ) |
| 304 |
|
simpr |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 305 |
237 304
|
rerpdivcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ψ ‘ 𝑥 ) / 𝑥 ) ∈ ℝ ) |
| 306 |
|
rpreccl |
⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 307 |
306
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 308 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ) |
| 309 |
|
eqidd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) = ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) |
| 310 |
248 305 307 308 309
|
offval2 |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∘f + ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) = ( 𝑥 ∈ ℝ+ ↦ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) ) |
| 311 |
|
chpo1ub |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) |
| 312 |
|
divrcnv |
⊢ ( 1 ∈ ℂ → ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ⇝𝑟 0 ) |
| 313 |
29 312
|
ax-mp |
⊢ ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ⇝𝑟 0 |
| 314 |
|
rlimo1 |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ⇝𝑟 0 → ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ∈ 𝑂(1) ) |
| 315 |
313 314
|
mp1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ∈ 𝑂(1) ) |
| 316 |
|
o1add |
⊢ ( ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∈ 𝑂(1) ∧ ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ∈ 𝑂(1) ) → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∘f + ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 317 |
311 315 316
|
sylancr |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ+ ↦ ( ( ψ ‘ 𝑥 ) / 𝑥 ) ) ∘f + ( 𝑥 ∈ ℝ+ ↦ ( 1 / 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 318 |
310 317
|
eqeltrrd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ψ ‘ 𝑥 ) / 𝑥 ) + ( 1 / 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 319 |
303 318
|
eqeltrd |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ) ∈ 𝑂(1) ) |
| 320 |
238 304
|
rerpdivcld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ∈ ℝ ) |
| 321 |
|
chpge0 |
⊢ ( 𝑥 ∈ ℝ → 0 ≤ ( ψ ‘ 𝑥 ) ) |
| 322 |
236 321
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 0 ≤ ( ψ ‘ 𝑥 ) ) |
| 323 |
237 322
|
ge0p1rpd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ψ ‘ 𝑥 ) + 1 ) ∈ ℝ+ ) |
| 324 |
323
|
rprege0d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) ∈ ℝ ∧ 0 ≤ ( ( ψ ‘ 𝑥 ) + 1 ) ) ) |
| 325 |
242
|
nnrpd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ+ ) |
| 326 |
325
|
rpregt0d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
| 327 |
|
divge0 |
⊢ ( ( ( ( ( ψ ‘ 𝑥 ) + 1 ) ∈ ℝ ∧ 0 ≤ ( ( ψ ‘ 𝑥 ) + 1 ) ) ∧ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) → 0 ≤ ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
| 328 |
324 326 327
|
syl2anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 0 ≤ ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
| 329 |
243 328
|
absidd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) = ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) |
| 330 |
320
|
recnd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ∈ ℂ ) |
| 331 |
330
|
abscld |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ) ∈ ℝ ) |
| 332 |
|
fllep1 |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) |
| 333 |
236 332
|
syl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ) |
| 334 |
|
rpregt0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 335 |
334
|
adantl |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 336 |
323
|
rpregt0d |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) ∈ ℝ ∧ 0 < ( ( ψ ‘ 𝑥 ) + 1 ) ) ) |
| 337 |
|
lediv2 |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℝ ∧ 0 < ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ∧ ( ( ( ψ ‘ 𝑥 ) + 1 ) ∈ ℝ ∧ 0 < ( ( ψ ‘ 𝑥 ) + 1 ) ) ) → ( 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ↔ ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ≤ ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ) ) |
| 338 |
335 326 336 337
|
syl3anc |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ≤ ( ( ⌊ ‘ 𝑥 ) + 1 ) ↔ ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ≤ ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ) ) |
| 339 |
333 338
|
mpbid |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ≤ ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ) |
| 340 |
320
|
leabsd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ≤ ( abs ‘ ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ) ) |
| 341 |
243 320 331 339 340
|
letrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ≤ ( abs ‘ ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ) ) |
| 342 |
329 341
|
eqbrtrd |
⊢ ( ( ⊤ ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ≤ ( abs ‘ ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ) ) |
| 343 |
342
|
adantrr |
⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ≤ ( abs ‘ ( ( ( ψ ‘ 𝑥 ) + 1 ) / 𝑥 ) ) ) |
| 344 |
278 319 320 296 343
|
o1le |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) ) ∈ 𝑂(1) ) |
| 345 |
|
o1const |
⊢ ( ( ℝ+ ⊆ ℝ ∧ 1 ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) ) |
| 346 |
15 29 345
|
mp2an |
⊢ ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) |
| 347 |
346
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ 1 ) ∈ 𝑂(1) ) |
| 348 |
296 297 344 347
|
o1sub2 |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ) ∈ 𝑂(1) ) |
| 349 |
234 245 295 348
|
o1sub2 |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) − ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ) ) ∈ 𝑂(1) ) |
| 350 |
14 349
|
o1res2 |
⊢ ( ⊤ → ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 ) − 1 ) / 𝑛 ) − ( ( ( ( ψ ‘ 𝑥 ) + 1 ) / ( ( ⌊ ‘ 𝑥 ) + 1 ) ) − 1 ) ) ) ∈ 𝑂(1) ) |
| 351 |
228 350
|
eqeltrrid |
⊢ ( ⊤ → ( 𝑥 ∈ ( 1 [,) +∞ ) ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ 𝑂(1) ) |
| 352 |
17 351
|
eqeltrd |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ↾ ( 1 [,) +∞ ) ) ∈ 𝑂(1) ) |
| 353 |
|
eqid |
⊢ ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) = ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) |
| 354 |
353 45
|
fmpti |
⊢ ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) : ℝ ⟶ ℂ |
| 355 |
354
|
a1i |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) : ℝ ⟶ ℂ ) |
| 356 |
|
ssidd |
⊢ ( ⊤ → ℝ ⊆ ℝ ) |
| 357 |
355 356 278
|
o1resb |
⊢ ( ⊤ → ( ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ 𝑂(1) ↔ ( ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ↾ ( 1 [,) +∞ ) ) ∈ 𝑂(1) ) ) |
| 358 |
352 357
|
mpbird |
⊢ ( ⊤ → ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ 𝑂(1) ) |
| 359 |
358
|
mptru |
⊢ ( 𝑥 ∈ ℝ ↦ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑅 ‘ 𝑛 ) / ( 𝑛 · ( 𝑛 + 1 ) ) ) ) ∈ 𝑂(1) |